Selected article for: "experimental study and relative humidity temperature"

Author: Liu, Jingyun; Li, Ping
Title: Control and Real-Time Data Acquisition of an Experimental Platform for Stored Grain Aeration Study
  • Cord-id: 56392skx
  • Document date: 2021_8_10
  • ID: 56392skx
    Snippet: Aeration is one of the most important methods to keep stored grain safe and maintain its quality. Experimental platforms are used for stored grain aeration study in a laboratory-scale. The purpose of this paper was to provide the real-time data acquisition and control system design of a new experimental platform with multifunction for stored grain study. Requirements of the aeration experiments were analyzed, and multi running modes were designed. The aeration inlet air conditions were designed
    Document: Aeration is one of the most important methods to keep stored grain safe and maintain its quality. Experimental platforms are used for stored grain aeration study in a laboratory-scale. The purpose of this paper was to provide the real-time data acquisition and control system design of a new experimental platform with multifunction for stored grain study. Requirements of the aeration experiments were analyzed, and multi running modes were designed. The aeration inlet air conditions were designed to be adjustable and multi variables need to be controlled simultaneously, which was a key problem to be solved for the platform. An ON/OFF-PID based multivariable cooperative control method was proposed, and two control loops were formed where inlet air temperature and humidity were considered separately while could be controlled simultaneously with a logic judgement strategy. Real-time data needed to be monitored was acquired with different sensors and displayed intuitively. Experiments were carried out to test the static and dynamic characteristics of the control method and three inlet air flow rates of 0.03, 0.08 and 0.13 m·s(−1)were used. Performance of the data acquisition system was also tested. The results showed that, the inlet air conditions control error was within ±1 °C and 10% for temperature and relative humidity, respectively. The real-time data acquisition of multi parameters during aeration process was realized. The experimental platform can be used for studies of different aeration objectives.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1