Author: Li, Xin; Lu, Peixin; Hu, Lianting; Huang, Tianhui; Lu, Long
Title: Factors Associated with Mental Health Results among Workers with Income Losses Exposed to COVID-19 in China Cord-id: 1md8j11e Document date: 2020_8_4
ID: 1md8j11e
Snippet: The outbreak and worldwide spread of COVID-19 has resulted in a high prevalence of mental health problems in China and other countries. This was a cross-sectional study conducted using an online survey and face-to-face interviews to assess mental health problems and the associated factors among Chinese citizens with income losses exposed to COVID-19. The degrees of the depression, anxiety, insomnia, and distress symptoms of our participants were assessed using the Chinese versions of the Patient
Document: The outbreak and worldwide spread of COVID-19 has resulted in a high prevalence of mental health problems in China and other countries. This was a cross-sectional study conducted using an online survey and face-to-face interviews to assess mental health problems and the associated factors among Chinese citizens with income losses exposed to COVID-19. The degrees of the depression, anxiety, insomnia, and distress symptoms of our participants were assessed using the Chinese versions of the Patient Health Questionnaire-9 (PHQ-9), the Generalized Anxiety Disorder-7 (GAD-7), the Insomnia Severity Index-7 (ISI-7), and the revised 7-item Impact of Event Scale (IES-7) scales, respectively, which found that the prevalence rates of depression, anxiety, insomnia, and distress caused by COVID-19 were 45.5%, 49.5%, 30.9%, and 68.1%, respectively. Multivariable logistic regression analysis was performed to identify factors associated with mental health outcomes among workers with income losses during COVID-19. Participants working in Hubei province with heavy income losses, especially pregnant women, were found to have a high risk of developing unfavorable mental health symptoms and may need psychological support or interventions.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome and local government: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute respiratory syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and logistic regression analysis: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and longitudinal follow: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- acute respiratory syndrome and low number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- local government and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- local government and logistic regression analysis: 1, 2, 3, 4, 5, 6
- logistic regression analysis and longitudinal follow: 1
- logistic regression analysis and low number: 1, 2, 3, 4, 5, 6
- logistic regression and longitudinal follow: 1, 2, 3, 4, 5, 6, 7, 8, 9
- logistic regression and low number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- logistic regression model and longitudinal follow: 1, 2
- logistic regression model and low number: 1, 2, 3
- longitudinal follow and low number: 1
Co phrase search for related documents, hyperlinks ordered by date