Selected article for: "binding site and conformational change"

Author: Karathanou, Konstantina; Lazaratos, Michalis; Bertalan, Éva; Siemers, Malte; Buzar, Krzysztof; Schertler, Gebhard F.X.; del Val, Coral; Bondar, Ana-Nicoleta
Title: A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2
  • Cord-id: pvufajw4
  • Document date: 2020_9_10
  • ID: pvufajw4
    Snippet: Corona virus spike protein S is a large homo-trimeric protein anchored in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology
    Document: Corona virus spike protein S is a large homo-trimeric protein anchored in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology that relies upon graph and centrality analyses, augmented by bioinformatics, to identify and characterize large H-bond clusters in protein structures. We apply this methodology to protein S ectodomain and find that, in the closed conformation, the three protomers of protein S bring the same contribution to an extensive central network of H-bonds, and contribute symmetrically to a relatively large H-bond cluster at the receptor binding domain, and to a cluster near a protease cleavage site. Markedly different H-bonding at these three clusters in open and pre-fusion conformations suggest dynamic H-bond clusters could facilitate structural plasticity and selection of a protein S protomer for binding to the host receptor, and proteolytic cleavage. From analyses of spike protein sequences we identify patches of histidine and carboxylate groups that could be involved in transient proton binding.

    Search related documents:
    Co phrase search for related documents
    • activation proteolytic cleavage and acute respiratory syndrome: 1, 2, 3, 4, 5
    • active site and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and acyclic graph: 1, 2
    • acute respiratory syndrome and additional test: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • acute respiratory syndrome and local connection: 1