Selected article for: "available information and predictive model"

Author: Marois, Ingrid; Forfait, Carole; Inizan, Catherine; Klement-Frutos, Elise; Valiame, Anabelle; Aubert, Daina; Gourinat, Ann-Claire; Laumond, Sylvie; Barsac, Emilie; Grangeon, Jean-Paul; Cazorla, Cécile; Merlet, Audrey; Tarantola, Arnaud; Dupont-Rouzeyrol, Myrielle; Descloux, Elodie
Title: Development of a bedside score to predict dengue severity
  • Cord-id: gvfrooqs
  • Document date: 2021_5_24
  • ID: gvfrooqs
    Snippet: BACKGROUND: In 2017, New Caledonia experienced an outbreak of severe dengue causing high hospital burden (4379 cases, 416 hospital admissions, 15 deaths). We decided to build a local operational model predictive of dengue severity, which was needed to ease the healthcare circuit. METHODS: We retrospectively analyzed clinical and biological parameters associated with severe dengue in the cohort of patients hospitalized at the Territorial Hospital between January and July 2017 with confirmed dengu
    Document: BACKGROUND: In 2017, New Caledonia experienced an outbreak of severe dengue causing high hospital burden (4379 cases, 416 hospital admissions, 15 deaths). We decided to build a local operational model predictive of dengue severity, which was needed to ease the healthcare circuit. METHODS: We retrospectively analyzed clinical and biological parameters associated with severe dengue in the cohort of patients hospitalized at the Territorial Hospital between January and July 2017 with confirmed dengue, in order to elaborate a comprehensive patient’s score. Patients were compared in univariate and multivariate analyses. Predictive models for severity were built using a descending step-wise method. RESULTS: Out of 383 included patients, 130 (34%) developed severe dengue and 13 (3.4%) died. Major risk factors identified in univariate analysis were: age, comorbidities, presence of at least one alert sign, platelets count < 30 × 10(9)/L, prothrombin time < 60%, AST and/or ALT > 10 N, and previous dengue infection. Severity was not influenced by the infecting dengue serotype nor by previous Zika infection. Two models to predict dengue severity were built according to sex. Best models for females and males had respectively a median Area Under the Curve = 0.80 and 0.88, a sensitivity = 84.5 and 84.5%, a specificity = 78.6 and 95.5%, a positive predictive value = 63.3 and 92.9%, a negative predictive value = 92.8 and 91.3%. Models were secondarily validated on 130 patients hospitalized for dengue in 2018. CONCLUSION: We built robust and efficient models to calculate a bedside score able to predict dengue severity in our setting. We propose the spreadsheet for dengue severity score calculations to health practitioners facing dengue outbreaks of enhanced severity in order to improve patients’ medical management and hospitalization flow. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-021-06146-z.

    Search related documents:
    Co phrase search for related documents
    • abdominal pain and acute renal failure: 1, 2, 3
    • abdominal pain and ade antibody dependent enhancement: 1
    • abdominal pain and local hospital: 1
    • abdominal pain and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • abdominal pain diarrhea and acute infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • abdominal pain diarrhea and acute renal failure: 1
    • abdominal pain diarrhea and logistic regression: 1, 2, 3, 4, 5, 6
    • abdominal pain diarrhea anorexia vomiting and acute infection: 1, 2, 3
    • abrupt onset and acute infection: 1, 2, 3
    • acute infection and ade antibody dependent enhancement: 1, 2, 3, 4, 5, 6
    • acute infection and local hospital: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • acute infection and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute infection responsible and logistic regression: 1
    • acute renal failure and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17