Author: Moezzi, Meisam; Shirbandi, Kiarash; Shahvandi, Hassan Kiani; Arjmand, Babak; Rahim, Fakher
Title: The Diagnostic Accuracy of Artificial Intelligence-Assisted CT Imaging in COVID-19 Disease: A Systematic Review and Meta-Analysis Cord-id: grxrikvq Document date: 2021_5_6
ID: grxrikvq
Snippet: Artificial intelligence (AI) systems have become critical in support of decision-making. This systematic review summarizes all the data currently available on the AI-assisted CT-Scan prediction accuracy for COVID-19. The ISI Web of Science, Cochrane Library, PubMed, Scopus, CINAHL, Science Direct, PROSPERO, and EMBASE were systematically searched. We used the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess all included studies' quality and potential bias. A hi
Document: Artificial intelligence (AI) systems have become critical in support of decision-making. This systematic review summarizes all the data currently available on the AI-assisted CT-Scan prediction accuracy for COVID-19. The ISI Web of Science, Cochrane Library, PubMed, Scopus, CINAHL, Science Direct, PROSPERO, and EMBASE were systematically searched. We used the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess all included studies' quality and potential bias. A hierarchical receiver-operating characteristic summary (HSROC) curve and a summary receiver operating characteristic (SROC) curve have been implemented. The area under the curve (AUC) was computed to determine the diagnostic accuracy. Finally, 36 studies (a total of 39,246 image data) were selected for inclusion into the final meta-analysis. The pooled sensitivity for AI was 0.90 (95% CI, 0.90-0.91), specificity was 0.91 (95% CI, 0.90-0.92) and the AUC was 0.96 (95% CI, 0.91-0.98). For deep learning (DL) method, the pooled sensitivity was 0.90 (95% CI, 0.90 - 0.91), specificity was 0.88 (95% CI, 0.87 - 0.88) and the AUC was 0.96 (95% CI, 0.93 - 0.97). In case of machine learning (ML), the pooled sensitivity was 0.90 (95% CI, 0.90 - 0.91), specificity was 0.95 (95% CI, 0.94 - 0.95) and the AUC was 0.97 (95% CI, 0.96-0.99). AI in COVID-19 patients is useful in identifying symptoms of lung involvement. More prospective real-time trials are required to confirm AI's role for high and quick COVID-19 diagnosis due to the possible selection bias and retrospective existence of currently available studies.
Search related documents:
Co phrase search for related documents- abstract article and acute respiratory distress syndrome: 1, 2
- abstract article and machine learning: 1, 2, 3
- abstract article title and acute respiratory: 1
- accuracy tests and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy tests and machine artificial intelligence: 1
- accuracy tests and machine learning: 1, 2, 3, 4, 5, 6, 7, 8
- accurate rapid and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accurate rapid and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6
- accurate rapid and lung involvement: 1, 2
- accurate rapid and lung tissue: 1
- accurate rapid and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- accurate rapid diagnosis and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accurate rapid diagnosis and machine learning: 1, 2, 3, 4
- accurate rapid diagnosis role and acute respiratory: 1
- accurate rapid diagnosis role and machine learning: 1
- acute respiratory and lung involvement: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and machine artificial intelligence: 1, 2, 3, 4, 5, 6, 7, 8
- acute respiratory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date