Author: Lv, Wei; Ke, Qing; Li, Kezan
Title: Dynamical analysis and control strategies of an SIVS epidemic model with imperfect vaccination on scale-free networks Cord-id: 7y7ke10e Document date: 2019_11_23
ID: 7y7ke10e
Snippet: Vaccination is an effective method to prevent the spread of infectious diseases. In this paper, we develop an SIVS epidemic model with degree-related transmission rates and imperfect vaccination on scale-free networks. Firstly, we derive two threshold parameters and existence conditions of multiple endemic equilibria. Secondly, not only the global asymptotical stability of disease-free equilibrium and the persistence of the disease are derived, but also the global attractivity of the unique ende
Document: Vaccination is an effective method to prevent the spread of infectious diseases. In this paper, we develop an SIVS epidemic model with degree-related transmission rates and imperfect vaccination on scale-free networks. Firstly, we derive two threshold parameters and existence conditions of multiple endemic equilibria. Secondly, not only the global asymptotical stability of disease-free equilibrium and the persistence of the disease are derived, but also the global attractivity of the unique endemic equilibrium is proved using the monotone iterative technique. Thirdly, the effects of various immunization schemes including uniform immunization, targeted immunization and acquaintance immunization are studied, and the optimal vaccination strategy is analyzed by Pontryagin’s maximum principle. Finally, we perform numerical simulations to verify these theoretical results.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date