Author: Ito, Kimihito; Zeugmann, Thomas; Zhu, Yu
Title: Clustering the Normalized Compression Distance for Influenza Virus Data Cord-id: mps2bwum Document date: 2010_1_1
ID: mps2bwum
Snippet: The present paper analyzes the usefulness of the normalized compression distance for the problem to cluster the hemagglutinin (HA) sequences of influenza virus data for the HA gene in dependence on the available compressors. Using the CompLearn Toolkit, the built-in compressors zlib and bzip2 are compared. Moreover, a comparison is made with respect to hierarchical and spectral clustering. For the hierarchical clustering, hclust from the R package is used, and the spectral clustering is done via
Document: The present paper analyzes the usefulness of the normalized compression distance for the problem to cluster the hemagglutinin (HA) sequences of influenza virus data for the HA gene in dependence on the available compressors. Using the CompLearn Toolkit, the built-in compressors zlib and bzip2 are compared. Moreover, a comparison is made with respect to hierarchical and spectral clustering. For the hierarchical clustering, hclust from the R package is used, and the spectral clustering is done via the kLine algorithm proposed by Fischer and Poland (2004). Our results are very promising and show that one can obtain an (almost) perfect clustering. It turned out that the zlib compressor allowed for better results than the bzip2 compressor and, if all data are concerned, then hierarchical clustering is a bit better than spectral clustering via kLines.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date