Selected article for: "low binding energy and lower binding"

Author: Mohammadi-Dehcheshmeh, Manijeh; Moghbeli, Sadrollah Molaei; Rahimirad, Samira; Alanazi, Ibrahim O.; Shehri, Zafer Saad Al; Ebrahimie, Esmaeil
Title: A Transcription Regulatory Sequence in the 5′ Untranslated Region of SARS-CoV-2 Is Vital for Virus Replication with an Altered Evolutionary Pattern against Human Inhibitory MicroRNAs
  • Cord-id: ieogfxin
  • Document date: 2021_2_4
  • ID: ieogfxin
    Snippet: Our knowledge of the evolution and the role of untranslated region (UTR) in SARS-CoV-2 pathogenicity is very limited. Leader sequence, originated from UTR, is found at the 5′ ends of all encoded SARS-CoV-2 transcripts, highlighting its importance. Here, evolution of leader sequence was compared between human pathogenic and non-pathogenic coronaviruses. Then, profiling of microRNAs that can inactivate the key UTR regions of coronaviruses was carried out. A distinguished pattern of evolution in
    Document: Our knowledge of the evolution and the role of untranslated region (UTR) in SARS-CoV-2 pathogenicity is very limited. Leader sequence, originated from UTR, is found at the 5′ ends of all encoded SARS-CoV-2 transcripts, highlighting its importance. Here, evolution of leader sequence was compared between human pathogenic and non-pathogenic coronaviruses. Then, profiling of microRNAs that can inactivate the key UTR regions of coronaviruses was carried out. A distinguished pattern of evolution in leader sequence of SARS-CoV-2 was found. Mining all available microRNA families against leader sequences of coronaviruses resulted in discovery of 39 microRNAs with a stable thermodynamic binding energy. Notably, SARS-CoV-2 had a lower binding stability against microRNAs. hsa-MIR-5004-3p was the only human microRNA able to target the leader sequence of SARS and to a lesser extent, also SARS-CoV-2. However, its binding stability decreased remarkably in SARS-COV-2. We found some plant microRNAs with low and stable binding energy against SARS-COV-2. Meta-analysis documented a significant (p < 0.01) decline in the expression of MIR-5004-3p after SARS-COV-2 infection in trachea, lung biopsy, and bronchial organoids as well as lung-derived Calu-3 and A549 cells. The paucity of the innate human inhibitory microRNAs to bind to leader sequence of SARS-CoV-2 can contribute to its high replication in infected human cells.

    Search related documents:
    Co phrase search for related documents
    • accessible safe and acute respiratory syndrome coronavirus: 1, 2
    • accessible safe and lung alveolar: 1
    • achilles sars heel and acute respiratory syndrome coronavirus: 1, 2
    • acute respiratory syndrome coronavirus and low abundance: 1, 2, 3, 4, 5, 6, 7
    • acute respiratory syndrome coronavirus and low quality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome coronavirus and low stability: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • acute respiratory syndrome coronavirus and lung alveolar: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome coronavirus and lung biopsy: 1, 2, 3, 4, 5, 6, 7, 8
    • acute respiratory syndrome coronavirus and lung derive: 1
    • acute respiratory syndrome coronavirus and lung epithelium: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome coronavirus and lung epithelium nhbe: 1
    • low quality and lung alveolar: 1
    • low stability and lung alveolar: 1