Selected article for: "large scale and linear detection"

Author: Li, Niannian; Jin, Kairang; Bai, Yanmin; Fu, Haifeng; Liu, Lin; Liu, Bin
Title: Tn5 Transposase Applied in Genomics Research
  • Cord-id: b4ewr6pe
  • Document date: 2020_11_6
  • ID: b4ewr6pe
    Snippet: The development of high-throughput sequencing (next-generation sequencing technology (NGS)) and the continuous increase in experimental throughput require the upstream sample processing steps of NGS to be as simple as possible to improve the efficiency of the entire NGS process. The transposition system has fast “cut and paste” and “copy and paste” functions, and has been innovatively applied to the NGS field. For example, the Assay for Transposase-Accessible Chromatin with high throughp
    Document: The development of high-throughput sequencing (next-generation sequencing technology (NGS)) and the continuous increase in experimental throughput require the upstream sample processing steps of NGS to be as simple as possible to improve the efficiency of the entire NGS process. The transposition system has fast “cut and paste” and “copy and paste” functions, and has been innovatively applied to the NGS field. For example, the Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-Seq) uses high-throughput sequencing to detect chromatin regions accessible by Tn5 transposase. Linear Amplification via Transposon Insertion (LIANTI) uses Tn5 transposase for linear amplification, haploid typing, and structural variation detection. Not only is it efficient and simple, it effectively shortens the time for NGS sample library construction, realizes large-scale and rapid sequencing, improves sequencing resolution, and can be flexibly modified for more technological innovation.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1