Author: Brandon Malone; Boris Simovski; Clement Moline; Jun Cheng; Marius Gheorghe; Hugues Fontenelle; Ioannis Vardaxis; Simen Tennoe; Jenny-Ann Malmberg; Richard Stratford; Trevor Clancy
Title: Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2: toward universal blueprints for vaccine designs Document date: 2020_4_21
ID: cm30gyd8_1
Snippet: The global population is at present suffering from a pandemic of Coronavirus disease 2019 , caused by the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The goals of this study were to use artificial intelligence (AI) to predict blueprints for designing universal vaccines against SARS-CoV-2, that contain a sufficiently broad repertoire of T-cell epitopes capable of providing coverage and protection across the glob.....
Document: The global population is at present suffering from a pandemic of Coronavirus disease 2019 , caused by the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The goals of this study were to use artificial intelligence (AI) to predict blueprints for designing universal vaccines against SARS-CoV-2, that contain a sufficiently broad repertoire of T-cell epitopes capable of providing coverage and protection across the global population. To help achieve these aims, we profiled the entire SARS-CoV-2 proteome across the most frequent 100 HLA-A, HLA-B and HLA-DR alleles in the human population, using host-infected cell surface antigen presentation and immunogenicity predictors from the NEC Immune Profiler suite of tools, and generated comprehensive epitope maps. We then used these epitope maps as input for a Monte Carlo simulation designed to identify statistically significant "epitope hotspot" regions in the virus that are most likely to be immunogenic across a broad spectrum of HLA types. We then removed epitope hotspots that shared significant homology with proteins in the human proteome to reduce the chance of inducing off-target autoimmune responses. We also analyzed the antigen presentation and immunogenic landscape of all the nonsynonymous mutations across 3400 different sequences of the virus, to identify a trend whereby SARS-COV-2 mutations are predicted to have reduced potential to be presented by host-infected cells, and consequently detected by the host immune system. A sequence conservation analysis then removed epitope hotspots that occurred in less-conserved regions of the viral proteome. Finally, we used a database of the HLA genotypes of approximately 22 000 individuals to develop a "digital twin" type simulation to model how effective different combinations of hotspots would work in a diverse human population, and used the approach to identify an optimal constellation of epitopes hotspots that could provide maximum coverage in the global population. By combining the antigen presentation to the infected-host cell surface and immunogenicity predictions of the NEC Immune Profiler with a robust Monte Carlo and digital twin simulation, we have managed to profile the entire SARS-CoV-2 proteome and identify a subset of epitope hotspots that could be harnessed in a vaccine formulation to provide a broad coverage across the global population.
Search related documents:
Co phrase search for related documents- AI artificial intelligence and antigen presentation: 1, 2
- AI artificial intelligence and artificial intelligence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- AI artificial intelligence and broad coverage: 1, 2
- AI artificial intelligence and broad coverage provide: 1, 2
- AI artificial intelligence and broad spectrum: 1, 2, 3
- AI artificial intelligence and cell surface: 1, 2
- AI artificial intelligence and cell surface antigen presentation: 1, 2
- AI artificial intelligence and Coronavirus disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- AI artificial intelligence and different combination: 1
- AI artificial intelligence and different sequence: 1
- AI artificial intelligence and digital twin simulation: 1, 2
- aim achieve and antigen presentation: 1
- aim achieve and artificial intelligence: 1, 2, 3
- aim achieve and broad coverage: 1
- aim achieve and broad coverage provide: 1
- aim achieve and broad spectrum: 1, 2
- aim achieve and Coronavirus disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- aim achieve and digital twin simulation: 1
- aim achieve help and digital twin simulation: 1
Co phrase search for related documents, hyperlinks ordered by date