Selected article for: "infection case and system infection"

Author: J Alsaadi, Entedar A; Jones, Ian M
Title: Membrane binding proteins of coronaviruses
  • Document date: 2019_4_29
  • ID: 0hwbmf8k_19
    Snippet: With their large, adaptable genomes and their extensive distribution in the biosphere, CoVs will certainly feature in future zoonotic outbreaks; SARS and MERS will not be the last. While vaccination remains the cornerstone of control for viral diseases, it is not quick, a new vaccine may take 15 years to develop and it is very virus specific, a MERS vaccine will not protect against SARS and vice versa. Similarly, antiviral drugs targeting the mai.....
    Document: With their large, adaptable genomes and their extensive distribution in the biosphere, CoVs will certainly feature in future zoonotic outbreaks; SARS and MERS will not be the last. While vaccination remains the cornerstone of control for viral diseases, it is not quick, a new vaccine may take 15 years to develop and it is very virus specific, a MERS vaccine will not protect against SARS and vice versa. Similarly, antiviral drugs targeting the main enzyme functions of the virus risk being ineffective as a result of sequence variation in the target genes. Targeting the common physiological features of CoV replication; however, offers the possibility of developing panCoV treatments that focus on what is common to this family of viruses rather that what is distinct. There are obvious problems, viral stages that are so closely associated with host biology that toxicity would be expected, but there is also sufficient novelty, nsp-based membrane remodeling, for example, that clear targets for intervention exist. Such a strategy could offer the possibility for the development of panCoV agents of the future. More immediately, as membrane remodeling by CoVs is fundamental to immune evasion, targeting the proteins responsible for the remodeling could reveal the infection to the host immune system much sooner than would otherwise be the case and lead to the curtailment of the infection at a much earlier time, before extensive collateral damage is done. Together, a further understanding of the role of virus proteins in membrane interaction and remodeling, directly and via interaction with host factors, is likely to increase the underpinning data that lead to an increase in the therapeutic options for the control of CoV infections in the future.

    Search related documents:
    Co phrase search for related documents
    • antiviral drug and CoV infection control: 1, 2
    • antiviral drug and CoV replication: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • antiviral drug and early time: 1, 2, 3, 4, 5, 6, 7
    • antiviral drug and enzyme function: 1, 2
    • collateral damage and CoV infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • collateral damage and CoV replication: 1
    • CoV infection and early time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • CoV infection control and early time: 1, 2, 3
    • CoV replication and early time: 1, 2, 3