Author: Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; Hyman, J.M.; Yan, P.; Chowell, G.
Title: Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020 Document date: 2020_2_14
ID: 0zw3ukpx_12
Snippet: We estimate the best-fit model solution to the reported data using nonlinear least squares fitting. This process yields the set of model parameters Q that minimizes the sum of squared errors between the model f ðt; QÞ and the data y t ; where Q GLM ¼ (r, p, K), Q Rich ¼ (r, a, K), and Q Sub ¼ (r, p, K 0 , q, C thr ) correspond to the estimated parameter sets for the GLM, the Richards model, and the sub-epidemic model, respectively; parameter.....
Document: We estimate the best-fit model solution to the reported data using nonlinear least squares fitting. This process yields the set of model parameters Q that minimizes the sum of squared errors between the model f ðt; QÞ and the data y t ; where Q GLM ¼ (r, p, K), Q Rich ¼ (r, a, K), and Q Sub ¼ (r, p, K 0 , q, C thr ) correspond to the estimated parameter sets for the GLM, the Richards model, and the sub-epidemic model, respectively; parameter descriptions are provided in the Supplement. Thus, the best-fit solution f ðt; b QÞ is defined by the parameter set b Q ¼ arg min P n t¼1 ðf ðt; QÞ À y t Þ 2 . We fix the initial condition to the first data point.
Search related documents:
Co phrase search for related documents- best fit solution and model solution: 1, 2, 3, 4, 5, 6
- best fit solution and richards model: 1
- best fit solution and sub epidemic model: 1
- data point and model parameter: 1
- data point and model solution: 1
- data point and richards model: 1, 2, 3, 4
- data point and squared error: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date