Selected article for: "different dsrna and dsrna virus"

Author: Baum, Alina; García-Sastre, Adolfo
Title: Induction of type I interferon by RNA viruses: cellular receptors and their substrates
  • Document date: 2009_11_1
  • ID: 4c1nuv2p_22
    Snippet: Another study which provided some clarity concerning poly(I:C) and dsRNA showed that it was possible to convert poly(I:C) from an MDA5 substrate into a RIG-I substrate by subjecting it to RNAse III digestion, thereby producing shorter poly(I:C) molecules. The length of the resultant poly(I:C) molecules directly correlated with their dependence on either RIG-I or MDA5, with shorter fragments becoming more dependent on RIG-I. The poly(I:C) cleavage.....
    Document: Another study which provided some clarity concerning poly(I:C) and dsRNA showed that it was possible to convert poly(I:C) from an MDA5 substrate into a RIG-I substrate by subjecting it to RNAse III digestion, thereby producing shorter poly(I:C) molecules. The length of the resultant poly(I:C) molecules directly correlated with their dependence on either RIG-I or MDA5, with shorter fragments becoming more dependent on RIG-I. The poly(I:C) cleavage products contain 5 0 monophosphate ends, supporting the possibility that in the context of some dsRNA molecules a single phosphate might be sufficient for activation of RIG-I. Generation of capped dsRNA products of increasing lengths confirmed the relationship between length dependent activation of RIG-I and MDA5. Whereas dsRNA of 1 kb was entirely dependent on RIG-I for IFN induction, increasing the length to 4 kb progressively led to dual MDA5 and RIG-I dependence. The authors also examined the specificity of RIG-I and MDA5 for the different genomic segments of ReV, a dsRNA virus, previously characterized to be sensed by both sensors. They found that the smallest segment was primarily recognized by RIG-I and the larger ones relied more extensively on both RIG-I and MDA5 (Kato et al. 2008 ). In addition, the authors demonstrated that RNA isolated from VSV infected cells did not completely lose its ability to induce IFN following CIP treatment, unlike RNA from influenza A infected cells. However, combined digestion of this RNA with CIP and dsRNA-specific RNAse III, led to complete loss of IFN induction. By utilization of a dsRNA specific antibody the authors were able to determine that the size of this molecule in VSV infected cells corresponded to approximately 2.2 kb, whereas dsRNA from the EMCV infected cells, a virus dependent on MDA5 for recognition, was much longer. The effect of poly(I:C) length on RIG-I or MDA5 specificity was confirmed by another group which showed that increasing the length of poly(I:C) correlated with MDA5 specific detection (Ranjith- Kumar et al. 2009 ). Supporting the claim that RIG-I recognizes shorter dsRNA is yet another study which found that RIG-I was responsible for detection of dsRNA produced by coinfection of cells with Sendai viruses expressing GFP and antisense GFP (Hausmann et al. 2008) . It is important to keep in mind that in the above studies short dsRNA refers to RNA species of a few kilobases and the size at which this RNA is no longer capable of being a RIG-I substrate has not been determined.

    Search related documents: