Selected article for: "dominant role and recent study"

Author: Baum, Alina; García-Sastre, Adolfo
Title: Induction of type I interferon by RNA viruses: cellular receptors and their substrates
  • Document date: 2009_11_1
  • ID: 4c1nuv2p_33
    Snippet: A large number of proteins have been characterized as regulators of RIG-I activity in recent years. One of the best characterized to date is an E3 ubiquitin and ISG15 ligase tripartite motif protein 25 (TRIM25). TRIM25 acts as a positive regulator of RIG-I by adding a critical K172 K63linked ubiquitin group to the RIG-I CARD domain. The loss of lysine 172 (and subsequent lack of ubiquitination) is correlated with loss of RIG-I/MAVS interaction an.....
    Document: A large number of proteins have been characterized as regulators of RIG-I activity in recent years. One of the best characterized to date is an E3 ubiquitin and ISG15 ligase tripartite motif protein 25 (TRIM25). TRIM25 acts as a positive regulator of RIG-I by adding a critical K172 K63linked ubiquitin group to the RIG-I CARD domain. The loss of lysine 172 (and subsequent lack of ubiquitination) is correlated with loss of RIG-I/MAVS interaction and lack of IFN production. Supporting an important role of TRIM25 as a positive regulator of IFN response is the reduced ability of TRIM25 -/-MEFs to produce IFN following Sendai virus infection (Gack et al. 2007 ). The unique roles of RIG-I tandem CARD domains was partially deciphered when it was shown that CARD1 is required for TRIM25 binding while CARD2 serves as a target for TRIM25 mediated ubiquitination. Therefore, the presence of both CARDs is necessary for interaction with MAVS. Interestingly, a RIG-I splice variant lacking residues 36-80 in its first CARD domain was identified as being produced following viral infection. As this splice variant is unable to undergo TRIM25-mediated ubiquitination, it possesses dominant negative activity and is proposed to play a role in negative feedback regulation of RIG-I signaling (Gack et al. 2008) . Supporting an important role of TRIM25 in activation of RIG-I is a recent study describing inhibition of TRIM25 activity by influenza A NS1 protein, a wellcharacterized viral antagonist of the innate immune system Garcia-Sastre et al. 1998) . In this study, NS1 was shown to prevent oligomerization of TRIM25 by direct interaction and therefore prevent the ability of TRIM25 to ubiquitinate and activate RIG-I. Chimeric viruses with NS1 mutations that lack the ability to bind TRIM25 resulted in an attenuated viral phenotype ). In addition to TRIM25, a number of other ubiquitinases and deubiquitinases have been proposed to regulate RIG-I activity. Riplet/RNF135/REUL, an E3 ligase was identified by two independent groups and shown to play a positive role in RIG-I signaling. However, the two reports diverged on whether the C-or N-terminal region of RIG-I was being ubiquitinated (Gao et al. 2009; Oshiumi et al. 2009 ). Another E3 ligase, RNF125 has been proposed to negatively regulate RIG-I and target it for proteosomal degradation (Arimoto et al. 2007 ). CYLD, a deubiquitinase, has been proposed to remove polyubiquitin chains from RIG-I and have a negative effect on RIG-I signaling (Friedman et al. 2008) . RIG-I signaling has also been shown to be negatively regulated by gC1qR, a multifunctional ubiquitously expressed protein. Following viral infection gC1qR was shown to translocate to the mitochondria and through its interaction with MAVS inhibits RIG-I/MAVS association (Xu et al. 2009 ). ER localized, stimulator of IFN genes (STING) is the first ER resident protein shown to interact with RIG-I and be required for its full activity; possibly implicating ER associated functions, such as translation or stress response in RIG-I signaling (Ishikawa and Barber 2008) .

    Search related documents: