Selected article for: "domain encode and RNA virus"

Author: Martin, Baptiste; Coutard, Bruno; Guez, Théo; Paesen, Guido C; Canard, Bruno; Debart, Françoise; Vasseur, Jean-Jacques; Grimes, Jonathan M; Decroly, Etienne
Title: The methyltransferase domain of the Sudan ebolavirus L protein specifically targets internal adenosines of RNA substrates, in addition to the cap structure
  • Document date: 2018_9_6
  • ID: 243u68j8_37
    Snippet: Our work also indicates that the methyltransferase of Ebola virus has evolved to catalyze epigenetic or epitranscriptomic internal RNA 2'O-methylations in addition to the canonical cap methylations, and this to a much higher level than that of the other hMPV, illustrating a divergent evolution within the Mononegavirales order. Several studies recently reported the dynamics and complexity of viral epigenetic or epitranscriptomic RNA modifications .....
    Document: Our work also indicates that the methyltransferase of Ebola virus has evolved to catalyze epigenetic or epitranscriptomic internal RNA 2'O-methylations in addition to the canonical cap methylations, and this to a much higher level than that of the other hMPV, illustrating a divergent evolution within the Mononegavirales order. Several studies recently reported the dynamics and complexity of viral epigenetic or epitranscriptomic RNA modifications during infection (52) . Among them, internal A-2'O methylations are one of the most abundant (≈0.3%) although some of the viruses in the studies do not encode any MTase domain. It is noteworthy that, using SUDV MTase, we observed the same specificity of methylation on adenosine residues with ∼0.5% of A-2'O methylations. Additional work is now necessary to identify if host RNAs or viral RNAs are targeted by this viral MTase activity and to evaluate the importance of such RNA methylation in the context of innate immunity escape.

    Search related documents:
    Co phrase search for related documents