Selected article for: "close proximity and human bat"

Author: Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel Alexander; Maganga, Gael Darren; Vallo, Peter; Binger, Tabea; Gloza-Rausch, Florian; Rasche, Andrea; Yordanov, Stoian; Seebens, Antje; Oppong, Samuel; Sarkodie, Yaw Adu; Pongombo, Célestin; Lukashev, Alexander N.; Schmidt-Chanasit, Jonas; Stöcker, Andreas; Carneiro, Aroldo José Borges; Erbar, Stephanie; Maisner, Andrea; Fronhoffs, Florian; Buettner, Reinhard; Kalko, Elisabeth K.V.; Kruppa, Thomas; Franke, Carlos Roberto; Kallies, René; Yandoko, Emmanuel R.N.; Herrler, Georg; Reusken, Chantal; Hassanin, Alexandre; Krüger, Detlev H.; Matthee, Sonja; Ulrich, Rainer G.; Leroy, Eric M.; Drosten, Christian
Title: Bats host major mammalian paramyxoviruses
  • Document date: 2012_4_24
  • ID: yw028ohl_28
    Snippet: Beyond virus evolution and ecology, these data might have important implications for public health. HeV and NiV may be of African descent and have highly diversified relatives in Africa. These viruses might be associated with unrecognised disease, given the tremendous number of unresolved cases of encephalitis often ascribed to malaria in Africa 47 . Observed patterns of viral loads suggest that virus could be acquired during slaughtering of bats.....
    Document: Beyond virus evolution and ecology, these data might have important implications for public health. HeV and NiV may be of African descent and have highly diversified relatives in Africa. These viruses might be associated with unrecognised disease, given the tremendous number of unresolved cases of encephalitis often ascribed to malaria in Africa 47 . Observed patterns of viral loads suggest that virus could be acquired during slaughtering of bats for alimentary purposes 48 , but possibly also through contact with ubiquitous bat faeces (Supplementary Tables S3 and S8 ). It is for this same reason that the significance of Henipavirus-related agents in widely distributed bats in America deserves urgent further investigation. Moreover, the finding of agents serologically related to eradicable viruses, such as mumps, distemper and measles virus, is highly relevant in assessing perspectives and consequences of virus eradication 19, [49] [50] [51] . Clearly, the bats investigated in this study carried viruses that were only similar but not identical to those agents endemic in humans or livestock. These new data therefore emphasise the importance of investigating possible transmission chains, as exemplified by the case of severe acute respiratory syndrome, in which an agent derived from bats was probably passed to humans by intermediate hosts such as carnivores 52 . In the case of the mumps-related bat virus, a direct antigenetic relatedness between human and bat viruses has been confirmed, and the close genetic proximity between both viruses suggests that even cross-neutralisation might be possible. In light of the still narrow representation of genetic diversity of bats covered in this study (ca. 7.5% of bat species), further research might reveal further bat-borne PV in close relationship to known pathogens of humans and livestock. If antigenic overlap exists, this could become relevant for virus eradication concepts. Relevant antigenic overlap would be defined by proof of cross-neutralisation between reservoir-borne and human or livestock pathogens. In this latter case, elimination of circulating virus and the subsequent cessation of vaccination might leave humans or livestock susceptible for reservoir-borne, antigenetically related viruses.

    Search related documents:
    Co phrase search for related documents
    • acute respiratory syndrome and antigenic overlap: 1, 2
    • acute respiratory syndrome and bat human virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
    • acute respiratory syndrome and bat virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and circulate virus: 1, 2, 3, 4, 5, 6
    • acute respiratory syndrome and close relationship: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • bat human virus and close relationship: 1
    • bat virus and close relationship: 1, 2, 3, 4, 5