Selected article for: "Hendra virus and NiV Nipah virus"

Author: Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel Alexander; Maganga, Gael Darren; Vallo, Peter; Binger, Tabea; Gloza-Rausch, Florian; Rasche, Andrea; Yordanov, Stoian; Seebens, Antje; Oppong, Samuel; Sarkodie, Yaw Adu; Pongombo, Célestin; Lukashev, Alexander N.; Schmidt-Chanasit, Jonas; Stöcker, Andreas; Carneiro, Aroldo José Borges; Erbar, Stephanie; Maisner, Andrea; Fronhoffs, Florian; Buettner, Reinhard; Kalko, Elisabeth K.V.; Kruppa, Thomas; Franke, Carlos Roberto; Kallies, René; Yandoko, Emmanuel R.N.; Herrler, Georg; Reusken, Chantal; Hassanin, Alexandre; Krüger, Detlev H.; Matthee, Sonja; Ulrich, Rainer G.; Leroy, Eric M.; Drosten, Christian
Title: Bats host major mammalian paramyxoviruses
  • Document date: 2012_4_24
  • ID: yw028ohl_9
    Snippet: The genus Henipavirus comprises two known virus species causing fatal encephalitis in humans. These viruses (Hendra virus (HeV) in Australia, Nipah virus (NiV) in Asia) have been sporadically acquired from bats of the Pteropus genus by humans, swine and horses. We have recently detected small sequence fragments of potentially related viruses in a colony of E. helvum fruit bats in Ghana 12 . The present data identify at least 23 distinct viral cla.....
    Document: The genus Henipavirus comprises two known virus species causing fatal encephalitis in humans. These viruses (Hendra virus (HeV) in Australia, Nipah virus (NiV) in Asia) have been sporadically acquired from bats of the Pteropus genus by humans, swine and horses. We have recently detected small sequence fragments of potentially related viruses in a colony of E. helvum fruit bats in Ghana 12 . The present data identify at least 23 distinct viral clades in phylogenetic relation to henipaviruses in six bat species sampled in five different African countries (Fig. 2c) . On the basis of the minimal genetic distance between HeV and NiV (7% in the analysed L-gene fragment), the African viruses were estimated to pertain to 19 novel virus species in the genus Henipavirus (Figs 2c and 5). Full genome sequencing of a representative virus (GH-M74a) from a bat spleen confirmed formal classification in the genus Henipavirus (18,530 nucleotides, (Supplementary Fig. S3) ). It was noted that the RdRp gene of the analysed African virus contained the catalytic motif GDNQ, as typical of the order Mononegavirales, whereas HeV and NiV have an atypical GDNE motif. Sequencing of this motif in representatives of all major African virus clades also yielded GDNQ, supporting the idea that African rather than Asian viruses are identical to generic ancestors in this highly conserved motif. In addition, the GDNE signature typical of HeV and NiV was found in a small fraction of African viruses, and these were in closest phylogenetic relationship to HeV and NiV (Fig. 2c) . The most parsimonious explanation for the diversion of signatures in this highly conserved motif was a single change in a common ancestor to the GDNEcontaining clade, as opposed to hypothetical convergent acquisitions of GDNQ in all but one of the parallel lineages. The GDNEancestral virus would most likely have existed in Africa, and would have been ancestral to HeV and NiV as well.

    Search related documents:
    Co phrase search for related documents
    • african virus and common ancestor: 1