Author: Zhao, Chun-Hong; Wu, Hui-Tao; Che, He-Bin; Song, Ya-Nan; Zhao, Yu-Zhuo; Li, Kai-Yuan; Xiao, Hong-Ju; Zhai, Yong-Zhi; Liu, Xin; Lu, Hong-Xi; Li, Tan-Shi
Title: Prediction of fatal adverse prognosis in patients with fever-related diseases based on machine learning: A retrospective study Document date: 2020_3_5
ID: tk3861u0_20
Snippet: Our results suggest that CTnT has the largest weight in the prediction model of adverse prognosis patients with fever, the serum levels of CK, CK-MB, CTnT, and brain natriuretic peptide precursor in patients with fever adverse prognosis group were higher than those in patients with good prognosis group. Further logistic regression analysis showed that serum CK-MB and CTnT levels were independent risk factors for poor prognosis in patients with fe.....
Document: Our results suggest that CTnT has the largest weight in the prediction model of adverse prognosis patients with fever, the serum levels of CK, CK-MB, CTnT, and brain natriuretic peptide precursor in patients with fever adverse prognosis group were higher than those in patients with good prognosis group. Further logistic regression analysis showed that serum CK-MB and CTnT levels were independent risk factors for poor prognosis in patients with fever, which should be given clinical attention.
Search related documents:
Co phrase search for related documents- logistic regression analysis and prediction model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
- logistic regression analysis and prognosis group: 1, 2, 3, 4, 5
- logistic regression analysis and prognosis patient: 1, 2, 3, 4
- logistic regression analysis and risk factor: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- logistic regression analysis and serum level: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36
- poor prognosis and prediction model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- poor prognosis and prognosis group: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- poor prognosis and prognosis patient: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
- poor prognosis and risk factor: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- poor prognosis and serum level: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- prediction model and prognosis group: 1, 2
- prediction model and prognosis patient: 1, 2, 3
- prediction model and risk factor: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- prediction model and serum level: 1, 2, 3, 4, 5, 6, 7
- prognosis group and risk factor: 1, 2, 3, 4, 5, 6, 7, 8
- prognosis group and serum level: 1, 2
- prognosis patient and risk factor: 1, 2, 3
- prognosis patient and serum level: 1
- risk factor and serum level: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36
Co phrase search for related documents, hyperlinks ordered by date