Author: Neethirajan, Suresh; Ahmed, Syed Rahin; Chand, Rohit; Buozis, John; Nagy, Éva
Title: Recent Advances in Biosensor Development for Foodborne Virus Detection Document date: 2017_7_5
ID: sj6zfybb_144
Snippet: As described in the earlier section, microfluidic technologies and devices are mostly under intensive study and product development. Microfluidic technologies involve extremely small amounts of fluid, from tens to hundreds of microliters, passive or active fluid transport through capillary forces or pumping mechanisms, and microfabrication with shorter diffusional distances [31, 36] . These features make microfluidics ideal technologies being abl.....
Document: As described in the earlier section, microfluidic technologies and devices are mostly under intensive study and product development. Microfluidic technologies involve extremely small amounts of fluid, from tens to hundreds of microliters, passive or active fluid transport through capillary forces or pumping mechanisms, and microfabrication with shorter diffusional distances [31, 36] . These features make microfluidics ideal technologies being able to complete all necessary steps within one device and in a single reaction, which allows sample pretreatment, analysis, and signal capture and interpretation. Microfluidic devices are one of the most likely types in the future to meet all requirements of POC devices.
Search related documents:
Co phrase search for related documents- diffusional distance and single reaction: 1
Co phrase search for related documents, hyperlinks ordered by date