Author: Grove, Joe; Marsh, Mark
Title: The cell biology of receptor-mediated virus entry Document date: 2011_12_26
ID: v4op73hf_1
Snippet: Within an infected cell, viral nucleic acid, be it RNA or DNA, is relatively cosseted by cellular membranes and a protective cytosolic environment, but the cell-free stage that viral genomes must transit to access new host cells is fraught with danger. Viruses mitigate against these risks by packaging their nucleic acid into particles protected by a membrane and/or protein shell. This packaging poses a thermodynamic dilemma for a virus: particles.....
Document: Within an infected cell, viral nucleic acid, be it RNA or DNA, is relatively cosseted by cellular membranes and a protective cytosolic environment, but the cell-free stage that viral genomes must transit to access new host cells is fraught with danger. Viruses mitigate against these risks by packaging their nucleic acid into particles protected by a membrane and/or protein shell. This packaging poses a thermodynamic dilemma for a virus: particles must be resilient enough to protect the genome from environmental and/or immunological insults but also appropriately labile to ensure the contents are released when encountering suitable target cells. Thus, viruses are constructed as metastable molecular assemblages that can be unlocked during entry by specific molecular and/or cellular environmental cues, with minimal energetic input (Marsh and Helenius, 2006) . Receptors are key to the unlocking process, either directly triggering the molecular changes that lead to fusion/penetration or by guiding virions to specific cellular sites where environmental cues trigger fusion/penetration and subsequent infection. Thus, the unlocking process is usually directly coupled to the mechanisms through which viral genomes are transferred across a limiting cellular membrane (usually the plasma membrane or endosome membrane), the principal barrier to infection.
Search related documents:
Co phrase search for related documents- cellular membrane and fusion penetration: 1
- cellular membrane and host cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62
- cellular membrane and infected cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- cellular membrane and nucleic acid: 1, 2, 3, 4, 5, 6
- cellular membrane and plasma membrane: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56
- cellular membrane and protein shell: 1, 2, 3
- cellular membrane and subsequent infection: 1
- cellular membrane and target cell: 1, 2, 3, 4, 5, 6, 7, 8
- cellular membrane and viral genome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- cellular site and host cell: 1, 2
- cellular site and plasma membrane: 1, 2
Co phrase search for related documents, hyperlinks ordered by date