Author: Maroun, Justin; Muñoz-Alía, Miguel; Ammayappan, Arun; Schulze, Autumn; Peng, Kah-Whye; Russell, Stephen
Title: Designing and building oncolytic viruses Document date: 2017_3_31
ID: qr1gsmqw_11
Snippet: Viral infections are well understood but for OV applications must be viewed as drugs obeying pharmacological principles. A drug is typically administered to a patient in an extremely controlled way to produce a reliable, consistent and predictable pharmacokinetic profile (absorption, biodistribution, metabolism and excretion) and bioavailability. Natural viral infections do not obey these rules since the inoculum is of variable size; host resista.....
Document: Viral infections are well understood but for OV applications must be viewed as drugs obeying pharmacological principles. A drug is typically administered to a patient in an extremely controlled way to produce a reliable, consistent and predictable pharmacokinetic profile (absorption, biodistribution, metabolism and excretion) and bioavailability. Natural viral infections do not obey these rules since the inoculum is of variable size; host resistance varies from person to person; and the kinetics of the adaptive immune response differ greatly between individuals. Thus, the outcomes of natural infections with a given pathogenic virus range from asymptomatic seroconversion to full blown disease. The primary virus inoculum must contain sufficient virus particles to overcome initial host defenses at the site of entry. Some viruses enter through mucous membranes in the GI or respiratory tracts, while others enter via direct inoculation into the blood stream following a needle stick or arthropod blood meal [58] . OVs are delivered in the same way as traditional drugs, by introducing a highly concentrated virus inoculum into the body via oral, intravenous (IV), intranasal, transdermal, subcutaneous or intramuscular routes whereupon the dispersion of the inoculated virus, or its progeny, takes it to the targeted cancerous tissues. A major factor distinguishing OVs from traditional drugs is that they self-amplify and spread after delivery so their peak concentration may not be reached until sometime after the treatment is administered. Biological amplification by viral replication is the most important difference between viral therapies and traditional drugs. The concentration of a drug diminishes over time at a very well described rate depending on the clearance and elimination from the body. Through the course of a viral infection the viral load is initially small and then increases and finally decreases rather than just following a specific rate law of elimination. Limited amounts of virus particles replicate at the site of inoculation [59] . Input or progeny viruses then can either drain with the lymphatic fluid to the nearest lymph node, go directly into circulation or spread locally before spreading systemically to eventually arrive at a specific target organ. Pathology is induced by high levels of viral replication in the target organ directly killing infected cells or recruiting the immune system to kill them, at the same time provoking a local inflammatory response.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date