Author: Lamborn, Ian T.; Jing, Huie; Zhang, Yu; Drutman, Scott B.; Abbott, Jordan K.; Munir, Shirin; Bade, Sangeeta; Murdock, Heardley M.; Santos, Celia P.; Brock, Linda G.; Masutani, Evan; Fordjour, Emmanuel Y.; McElwee, Joshua J.; Hughes, Jason D.; Nichols, Dave P.; Belkadi, Aziz; Oler, Andrew J.; Happel, Corinne S.; Matthews, Helen F.; Abel, Laurent; Collins, Peter L.; Subbarao, Kanta; Gelfand, Erwin W.; Ciancanelli, Michael J.; Casanova, Jean-Laurent; Su, Helen C.
Title: Recurrent rhinovirus infections in a child with inherited MDA5 deficiency Document date: 2017_7_3
ID: vipx6t7e_18
Snippet: Our patient reveals the important protective and nonredundant role MDA5 exerts in the human respiratory tract, where it senses and initiates innate immune responses to HRV. Importantly, by carrying out in vitro infection experiments in MDA5-silenced respiratory epithelial cells-and also in the patient's own MDA5-deficient nasal epithelial cells and gene-edited fibroblasts-we have established that the MDA5 genotype is responsible for the increased.....
Document: Our patient reveals the important protective and nonredundant role MDA5 exerts in the human respiratory tract, where it senses and initiates innate immune responses to HRV. Importantly, by carrying out in vitro infection experiments in MDA5-silenced respiratory epithelial cells-and also in the patient's own MDA5-deficient nasal epithelial cells and gene-edited fibroblasts-we have established that the MDA5 genotype is responsible for the increased HRV replication and HRV clinical phenotype in our patient. In contrast, the lack of in vitro susceptibility to influenza virus or RSV in the same cell types suggests that the MDA5 genotype is not responsible for these infections in our patient. These results also indicate that, surprisingly, other viruses such as influenza virus and RSV, which have (ds)RNA intermediates or byproducts that can be recognized by MDA5, are recognized and controlled by other means when MDA5 is deficient. Although it is possible that defective responses to these other viruses might occur in other MDA5-deficient cell types, our results show that this does not occur at the initial site of infection in the lung within respiratory epithelial cells. Additionally, in our patient, the decreased incidence of infections with age coincided with the maturation of antibody responses. This ability of antibodies to compensate for defective innate immunity is similarly observed in other deficiencies of innate immunity. For example, in IRF7 deficiency associated with isolated influenza susceptibility, the absence of repeated influenza infection was associated with initiation of annual seasonal influenza vaccination . Moreover, in TIR AP deficiency associated with isolated staphylococcal susceptibility, staphylococcal lipoteichoic acid (LTA)-specific antibodies were able to prevent disease by rescuing defective TLR2-dependent recognition of LTA (Israel et al., 2017) .
Search related documents:
Co phrase search for related documents- age infection and cell type: 1, 2, 3, 4, 5, 6, 7, 8
- age infection and clinical phenotype: 1, 2, 3
- age infection and decrease incidence: 1
- age infection and disease prevent: 1, 2, 3, 4
- age infection and human respiratory tract: 1, 2, 3, 4, 5, 6, 7, 8
- age infection and immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
- age infection and immune response innate: 1, 2, 3, 4, 5
- age infection and influenza infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
- age infection and influenza susceptibility: 1, 2, 3, 4
- age infection and influenza vaccination: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- age infection and influenza virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- age infection and innate immunity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- age infection and lung infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
- age infection and mean control: 1
- age infection and patient infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
- age infection and RSV influenza virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- age infection and RSV influenza virus virus: 1, 2, 3, 4, 5, 6, 7, 8, 9
- age infection and seasonal influenza vaccination: 1, 2, 3, 4
- age infection and vitro infection: 1, 2, 3, 4, 5, 6, 7
Co phrase search for related documents, hyperlinks ordered by date