Author: Zuckerberg, Jeremy; Shaik, Mohammed; Nelin, Timothy D.; Widmeier, Keith; Kilbaugh, Todd
Title: A lung for all: Novel mechanical ventilator for emergency and low-resource settings Cord-id: 7f99c7u5 Document date: 2020_7_17
ID: 7f99c7u5
Snippet: AIMS: To create a low-cost ventilator that could be constructed with readily-available hospital equipment for use in emergency or low-resource settings. MAIN METHODS: The novel ventilator consists of an inspiratory limb composed of an elastic flow-inflating bag encased within a non-compliant outer sheath and an expiratory limb composed of a series of two, one-way bidirectional splitter valves derived from a self-inflating bag system. An Arduino Uno microcontroller controls a solenoid valve that
Document: AIMS: To create a low-cost ventilator that could be constructed with readily-available hospital equipment for use in emergency or low-resource settings. MAIN METHODS: The novel ventilator consists of an inspiratory limb composed of an elastic flow-inflating bag encased within a non-compliant outer sheath and an expiratory limb composed of a series of two, one-way bidirectional splitter valves derived from a self-inflating bag system. An Arduino Uno microcontroller controls a solenoid valve that can be programmed to open and close to produce a set respiratory rate and inspiratory time. Using an ASL 5000 Lung Simulator, we obtained flow, pressure, and volume waveforms at different lung compliances. KEY FINDINGS: At a static lung compliance of 50 mL/cm H(2)O and an airway resistance of 6 cm H(2)O/L/s, ventilated at a PIP and PEEP of 16 and 5 cm H(2)O, respectively, tidal volumes of approximately 540 mL were achieved. At a static lung compliance of 20 mL/cm H(2)O and an airway resistance of 6 cm H(2)O/L/s, ventilated at a PIP and PEEP of 38 and 15 cm H(2)O, respectively, tidal volumes of approximately 495 mL were achieved. SIGNIFICANCE: This novel ventilator is able to safely and reliably ventilate patients with a range of pulmonary disease in a simulated setting. Opportunities exist to utilize our ventilator in emergency situations and low-resource settings.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and low resource: 1, 2
- acute ards respiratory distress syndrome and lung compliance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
- acute ards respiratory distress syndrome and lung simulator: 1, 2
- acute respiratory failure and low resource: 1, 2, 3
- acute respiratory failure and lung compliance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- acute respiratory failure and lung simulator: 1, 2
Co phrase search for related documents, hyperlinks ordered by date