Selected article for: "face mask and mask fiber"

Author: Yuan, Zi-Cheng; Li, Wen; Wu, Lin; Huang, Dou; Wu, Manman; Hu, Bin
Title: Solid-Phase Microextraction Fiber in Face Mask for in Vivo Sampling and Direct Mass Spectrometry Analysis of Exhaled Breath Aerosol.
  • Cord-id: 2frdt9nv
  • Document date: 2020_8_14
  • ID: 2frdt9nv
    Snippet: Molecular analysis of exhaled breath aerosol (EBA) with simple procedures represents a key step in clinical and point-of-care applications. Due to the crucial health role, a face mask now is a safety device that helps protect the wearer from breathing in hazardous particles such as bacteria and viruses in the air; thus exhaled breath is also blocked to congregate in the small space inside of the face mask. Therefore, direct sampling and analysis of trace constituents in EBA using a face mask can
    Document: Molecular analysis of exhaled breath aerosol (EBA) with simple procedures represents a key step in clinical and point-of-care applications. Due to the crucial health role, a face mask now is a safety device that helps protect the wearer from breathing in hazardous particles such as bacteria and viruses in the air; thus exhaled breath is also blocked to congregate in the small space inside of the face mask. Therefore, direct sampling and analysis of trace constituents in EBA using a face mask can rapidly provide useful insights into human physiologic and pathological information. Herein, we introduce a simple approach to collect and analyze human EBA by combining a face mask with solid-phase microextraction (SPME) fiber. SPME fiber was inserted into a face mask to form SPME-in-mask that covered nose and mouth for in vivo sampling of EBA, and SPME fiber was then coupled with direct analysis in real-time mass spectrometry (DART-MS) to directly analyze the molecular compositions of EBA under ambient conditions. The applicability of SPME-in-mask was demonstrated by direct analysis of drugs and metabolites in oral and nasal EBA. The unique features of SPME-in-mask were also discussed. Our results showed that this method is enabled to analyze volatile and nonvolatile analytes in EBA and is expected to have a significant impact on human EBA analysis in clinical applications. We also hope this method will inspire biomarker screening of some respiratory diseases that usually required wearing of a face mask in daily life.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date