Author: Goncalves, C. P.; Rouco, J.
Title: Comparing Decision Tree-Based Ensemble Machine Learning Models for COVID-19 Death Probability Profiling Cord-id: 52b4gy9u Document date: 2020_12_8
ID: 52b4gy9u
Snippet: We compare the performance of major decision tree-based ensemble machine learning models on the task of COVID-19 death probability prediction, conditional on three risk factors: age group, sex and underlying comorbidity or disease, using the US Centers for Disease Control and Prevention (CDC)'s COVID-19 case surveillance dataset. To evaluate the impact of the three risk factors on COVID-19 death probability, we extract and analyze the conditional probability profile produced by the best performe
Document: We compare the performance of major decision tree-based ensemble machine learning models on the task of COVID-19 death probability prediction, conditional on three risk factors: age group, sex and underlying comorbidity or disease, using the US Centers for Disease Control and Prevention (CDC)'s COVID-19 case surveillance dataset. To evaluate the impact of the three risk factors on COVID-19 death probability, we extract and analyze the conditional probability profile produced by the best performer. The results show the presence of an exponential rise in death probability from COVID-19 with the age group, with males exhibiting a higher exponential growth rate than females, an effect that is stronger when an underlying comorbidity or disease is present, which also acts as an accelerator of COVID-19 death probability rise for both male and female subjects. The results are discussed in connection to healthcare and epidemiological concerns and in the degree to which they reinforce findings coming from other studies on COVID-19.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date