Author: Ma, Tao; Tan, Ying
Title: Adaptive and Dynamic Knowledge Transfer in Multi-task Learning with Attention Networks Cord-id: 4y3a67vn Document date: 2020_7_11
ID: 4y3a67vn
Snippet: Multi-task learning has shown promising results in many applications of machine learning: given several related tasks, it aims to generalize better on the original tasks, by leveraging the knowledge among tasks. The knowledge transfer mainly depends on task relationships. Most of existing multi-task learning methods guide learning processes based on predefined task relationships. However, the associated relationships have not been fully exploited in these methods. Replacing predefined task relat
Document: Multi-task learning has shown promising results in many applications of machine learning: given several related tasks, it aims to generalize better on the original tasks, by leveraging the knowledge among tasks. The knowledge transfer mainly depends on task relationships. Most of existing multi-task learning methods guide learning processes based on predefined task relationships. However, the associated relationships have not been fully exploited in these methods. Replacing predefined task relationships with the adaptively learned ones may lead to superior performance as it can avoid the misguiding of improper pre-definition. Therefore, in this paper, we propose Task Relation Attention Networks to adaptively model the task relationships and dynamically control the positive and negative knowledge transfer for different samples in multi-task learning. To evaluate the effectiveness of the proposed method, experiments on various datasets are conducted. The experimental results demonstrate that the proposed method outperforms both classical and state-of-the-art multi-task learning baselines.
Search related documents:
Co phrase search for related documents- activation function and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- activation function and machine learning: 1, 2, 3, 4, 5, 6
- adequate effort and machine learning: 1
- loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- loss function and machine learning application: 1
Co phrase search for related documents, hyperlinks ordered by date