Author: Blankenberger, Jacob; Haile, Sarah R.; Puhan, Milo A.; Berger, Christoph; Radtke, Thomas; Kriemler, Susi; Ulyte, Agne
Title: Prediction of Past SARS-CoV-2 Infections: A Prospective Cohort Study Among Swiss Schoolchildren Cord-id: 3ui598mn Document date: 2021_8_16
ID: 3ui598mn
Snippet: Objective: To assess the predictive value of symptoms, sociodemographic characteristics, and SARS-CoV-2 exposure in household, school, and community setting for SARS-CoV-2 seropositivity in Swiss schoolchildren at two time points in 2020. Design: Serological testing of children in primary and secondary schools (aged 6–13 and 12–16 years, respectively) took place in June–July (T1) and October–November (T2) 2020, as part of the longitudinal, school-based study Ciao Corona in the canton of
Document: Objective: To assess the predictive value of symptoms, sociodemographic characteristics, and SARS-CoV-2 exposure in household, school, and community setting for SARS-CoV-2 seropositivity in Swiss schoolchildren at two time points in 2020. Design: Serological testing of children in primary and secondary schools (aged 6–13 and 12–16 years, respectively) took place in June–July (T1) and October–November (T2) 2020, as part of the longitudinal, school-based study Ciao Corona in the canton of Zurich, Switzerland. Information on sociodemographic characteristics and clinical history was collected with questionnaires to parents; information on school-level SARS-CoV-2 infections was collected with questionnaires to school principals. Community-level cumulative incidence was obtained from official statistics. We used logistic regression to identify individual predictors of seropositivity and assessed the predictive performance of symptom- and exposure-based prediction models. Results: A total of 2,496 children (74 seropositive) at T1 and 2,152 children (109 seropositive) at T2 were included. Except for anosmia (odds ratio 15.4, 95% confidence interval [3.4–70.7]) and headache (2.0 [1.03–3.9]) at T2, none of the individual symptoms were significantly predictive of seropositivity at either time point. Of all the exposure variables, a reported SARS-CoV-2 case in the household was the strongest predictor for seropositivity at T1 (12.4 [5.8–26.7]) and T2 (10.8 [4.5–25.8]). At both time points, area under the receiver operating characteristic curve was greater for exposure-based (T1, 0.69; T2, 0.64) than symptom-based prediction models (T1, 0.59; T2, 0.57). Conclusions: In children, retrospective identification of past SARS-CoV-2 infections based on symptoms is imprecise. SARS-CoV-2 seropositivity is better predicted by factors of SARS-CoV-2 exposure, especially reported SARS-CoV-2 cases in the household. Predicting SARS-CoV-2 seropositivity in children in general is challenging, as few reliable predictors could be identified. For an accurate retrospective identification of SARS-CoV-2 infections in children, serological tests are likely indispensable. Trial registration number: NCT04448717.
Search related documents:
Co phrase search for related documents- acute infection and additional school: 1
- acute infection and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute infection and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute infection and long covid: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute infection and low accuracy: 1, 2, 3, 4
- acute infection and low number: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute infection and low seroprevalence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute respiratory syndrome coronavirus and additional school: 1
- acute respiratory syndrome coronavirus and lockdown measure: 1, 2
- acute respiratory syndrome coronavirus and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus and long covid: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus and low accuracy: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute respiratory syndrome coronavirus and low number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus and low seroprevalence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus type and logistic regression: 1, 2, 3
- acute respiratory syndrome coronavirus type and logistic regression model: 1, 2, 3
- acute respiratory syndrome coronavirus type and long covid: 1, 2, 3, 4, 5
- additional school and logistic regression: 1
Co phrase search for related documents, hyperlinks ordered by date