Author: Song, Cen; Yu, Qing; Jose, Esther; Zhuang, Jun; Geng, He
Title: A Hybrid Recommendation Approach for Viral Food Based on Online Reviews Cord-id: 4tih0dr9 Document date: 2021_8_4
ID: 4tih0dr9
Snippet: Nowadays, there are many types of viral foods and consumers expect to be able to quickly find foods that meet their own tastes. Traditional recommendation systems make recommendations based on the popularity of viral foods or user ratings. However, because of the different sentimental levels of users, deviations occur and it is difficult to meet the user’s specific needs. Based on the characteristics of viral food, this paper constructs a hybrid recommendation approach based on viral food revi
Document: Nowadays, there are many types of viral foods and consumers expect to be able to quickly find foods that meet their own tastes. Traditional recommendation systems make recommendations based on the popularity of viral foods or user ratings. However, because of the different sentimental levels of users, deviations occur and it is difficult to meet the user’s specific needs. Based on the characteristics of viral food, this paper constructs a hybrid recommendation approach based on viral food reviews and label attribute data. A user-based recommendation approach is combined with a content-based recommendation approach in a weighted combination. Compared with the traditional recommendation approaches, it is found that the hybrid recommendation approach performs more accurately in identifying the sentiments of user evaluations, and takes into account the similarities between users and foods. We can conclude that the proposed hybrid recommendation approach combined with the sentimental value of food reviews provides novel insights into improving the existing recommendation system used by e-commerce platforms.
Search related documents:
Co phrase search for related documents- absolute difference and machine classification: 1
- absolute difference and machine learning: 1, 2
- absolute difference and mae absolute error: 1, 2, 3, 4
- absolute error and accuracy calculation: 1
- absolute error and accurate prediction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- absolute error and local global: 1, 2, 3, 4
- absolute error and low precision: 1
- absolute error and machine classification: 1, 2
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and machine learning approach: 1, 2, 3
- absolute error and machine learning method: 1, 2, 3
- absolute error and machine learning method high accuracy: 1
- absolute error and mae absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- accuracy calculation and machine learning: 1, 2, 3
- accuracy calculation and machine learning method: 1, 2
- accuracy calculation and mae absolute error: 1
Co phrase search for related documents, hyperlinks ordered by date