Author: Effati, Meysam; Sun, Yu-Chen; Naguib, Hani E.; Nejat, Goldie
Title: Multimodal Detection of COVID-19 Symptoms using Deep Learning&Probability-based Weighting of Modes Cord-id: 8i0wo0xh Document date: 2021_9_3
ID: 8i0wo0xh
Snippet: The COVID-19 pandemic is one of the most challenging healthcare crises during the 21st century. As the virus continues to spread on a global scale, the majority of efforts have been on the development of vaccines and the mass immunization of the public. While the daily case numbers were following a decreasing trend, the emergent of new virus mutations and variants still pose a significant threat. As economies start recovering and societies start opening up with people going back into office buil
Document: The COVID-19 pandemic is one of the most challenging healthcare crises during the 21st century. As the virus continues to spread on a global scale, the majority of efforts have been on the development of vaccines and the mass immunization of the public. While the daily case numbers were following a decreasing trend, the emergent of new virus mutations and variants still pose a significant threat. As economies start recovering and societies start opening up with people going back into office buildings, schools, and malls, we still need to have the ability to detect and minimize the spread of COVID-19. Individuals with COVID-19 may show multiple symptoms such as cough, fever, and shortness of breath. Many of the existing detection techniques focus on symptoms having the same equal importance. However, it has been shown that some symptoms are more prevalent than others. In this paper, we present a multimodal method to predict COVID-19 by incorporating existing deep learning classifiers using convolutional neural networks and our novel probability-based weighting function that considers the prevalence of each symptom. The experiments were performed on an existing dataset with respect to the three considered modes of coughs, fever, and shortness of breath. The results show considerable improvements in the detection of COVID-19 using our weighting function when compared to an equal weighting function.
Search related documents:
Co phrase search for related documents- acoustic analysis and logistic regression: 1
- acoustic analysis and machine learning: 1, 2
- additional mode and logistic regression: 1
- additional mode and machine learning: 1
- logistic regression and lr logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lr logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lung respiratory tract and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date