Author: Tang, Guoxing; Luo, Ying; Lu, Feng; Li, Wei; Liu, Xiongcheng; Nan, Yucen; Ren, Yufei; Liao, Xiaofei; Wu, Song; Jin, Hai; Zomaya, Albert Y.; Sun, Ziyong
Title: Prediction of Sepsis in COVID-19 Using Laboratory Indicators Cord-id: 8p5xhd60 Document date: 2021_3_2
ID: 8p5xhd60
Snippet: BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has become a global public health concern. Many inpatients with COVID-19 have shown clinical symptoms related to sepsis, which will aggravate the deterioration of patients’ condition. We aim to diagnose Viral Sepsis Caused by SARS-CoV-2 by analyzing laboratory test data of patients with COVID-19 and establish an early predictive model for sepsis risk among patients with COVID-19. METHODS: This study retrospectively investigated la
Document: BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has become a global public health concern. Many inpatients with COVID-19 have shown clinical symptoms related to sepsis, which will aggravate the deterioration of patients’ condition. We aim to diagnose Viral Sepsis Caused by SARS-CoV-2 by analyzing laboratory test data of patients with COVID-19 and establish an early predictive model for sepsis risk among patients with COVID-19. METHODS: This study retrospectively investigated laboratory test data of 2,453 patients with COVID-19 from electronic health records. Extreme gradient boosting (XGBoost) was employed to build four models with different feature subsets of a total of 69 collected indicators. Meanwhile, the explainable Shapley Additive ePlanation (SHAP) method was adopted to interpret predictive results and to analyze the feature importance of risk factors. FINDINGS: The model for classifying COVID-19 viral sepsis with seven coagulation function indicators achieved the area under the receiver operating characteristic curve (AUC) 0.9213 (95% CI, 89.94–94.31%), sensitivity 97.17% (95% CI, 94.97–98.46%), and specificity 82.05% (95% CI, 77.24–86.06%). The model for identifying COVID-19 coagulation disorders with eight features provided an average of 3.68 (±) 4.60 days in advance for early warning prediction with 0.9298 AUC (95% CI, 86.91–99.04%), 82.22% sensitivity (95% CI, 67.41–91.49%), and 84.00% specificity (95% CI, 63.08–94.75%). INTERPRETATION: We found that an abnormality of the coagulation function was related to the occurrence of sepsis and the other routine laboratory test represented by inflammatory factors had a moderate predictive value on coagulopathy, which indicated that early warning of sepsis in COVID-19 patients could be achieved by our established model to improve the patient’s prognosis and to reduce mortality.
Search related documents:
Co phrase search for related documents- abnormal coagulation and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- abnormal coagulation function and acute respiratory syndrome: 1, 2
- absolute value and acid testing: 1
- absolute value and acute ards respiratory distress syndrome: 1
- absolute value and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- accurate rapid and acid testing: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- accurate rapid and acute ards respiratory distress syndrome: 1, 2, 3
- accurate rapid and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accurate rapid identification and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acid testing and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- activate inflammation and acute respiratory syndrome: 1, 2
Co phrase search for related documents, hyperlinks ordered by date