Selected article for: "acid receptor and acute respiratory syndrome"

Author: Dimonte, Salvatore; Babakir-Mina, Muhammed; Hama-Soor, Taib; Ali, Salar
Title: Genetic Variation and Evolution of the 2019 Novel Coronavirus
  • Cord-id: 59zhfh1o
  • Document date: 2021_1_6
  • ID: 59zhfh1o
    Snippet: INTRODUCTION: SARS-CoV-2 is a new type of coronavirus causing a pandemic severe acute respiratory syndrome (SARS-2). Coronaviruses are very diverting genetically and mutate so often periodically. The natural selection of viral mutations may cause host infection selectivity and infectivity. METHODS: This study was aimed to indicate the diversity between human and animal coronaviruses through finding the rate of mutation in each of the spike, nucleocapsid, envelope, and membrane proteins. RESULTS:
    Document: INTRODUCTION: SARS-CoV-2 is a new type of coronavirus causing a pandemic severe acute respiratory syndrome (SARS-2). Coronaviruses are very diverting genetically and mutate so often periodically. The natural selection of viral mutations may cause host infection selectivity and infectivity. METHODS: This study was aimed to indicate the diversity between human and animal coronaviruses through finding the rate of mutation in each of the spike, nucleocapsid, envelope, and membrane proteins. RESULTS: The mutation rate is abundant in all 4 structural proteins. The most number of statistically significant amino acid mutations were found in spike receptor-binding domain (RBD) which may be because it is responsible for a corresponding receptor binding in a broad range of hosts and host selectivity to infect. Among 17 previously known amino acids which are important for binding of spike to angiotensin-converting enzyme 2 (ACE2) receptor, all of them are conservative among human coronaviruses, but only 3 of them significantly are mutated in animal coronaviruses. A single amino acid aspartate-454, that causes dissociation of the RBD of the spike and ACE2, and F486 which gives the strength of binding with ACE2 remain intact in all coronaviruses. DISCUSSION/CONCLUSION: Observations of this study provided evidence of the genetic diversity and rapid evolution of SARS-CoV-2 as well as other human and animal coronaviruses.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1