Author: Nguyen, Van; Le, Trung; Le, Tue; Nguyen, Khanh; Vel, Olivier de; Montague, Paul; Grundy, John; Phung, Dinh
Title: Code Action Network for Binary Function Scope Identification Cord-id: 4g0u11ja Document date: 2020_4_17
ID: 4g0u11ja
Snippet: Function identification is a preliminary step in binary analysis for many applications from malware detection, common vulnerability detection and binary instrumentation to name a few. In this paper, we propose the Code Action Network (CAN) whose key idea is to encode the task of function scope identification to a sequence of three action states NI (i.e., next inclusion), NE (i.e., next exclusion), and FE (i.e., function end) to efficiently and effectively tackle function scope identification, th
Document: Function identification is a preliminary step in binary analysis for many applications from malware detection, common vulnerability detection and binary instrumentation to name a few. In this paper, we propose the Code Action Network (CAN) whose key idea is to encode the task of function scope identification to a sequence of three action states NI (i.e., next inclusion), NE (i.e., next exclusion), and FE (i.e., function end) to efficiently and effectively tackle function scope identification, the hardest and most crucial task in function identification. A bidirectional Recurrent Neural Network is trained to match binary programs with their sequence of action states. To work out function scopes in a binary, this binary is first fed to a trained CAN to output its sequence of action states which can be further decoded to know the function scopes in the binary. We undertake extensive experiments to compare our proposed method with other state-of-the-art baselines. Experimental results demonstrate that our proposed method outperforms the state-of-the-art baselines in terms of predictive performance on real-world datasets which include binaries from well-known libraries.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date