Selected article for: "additive model and relative humidity"

Author: Elias, Susan P; Gardner, Allison M; Maasch, Kirk A; Birkel, Sean D; Anderson, Norman T; Rand, Peter W; Lubelczyk, Charles B; Smith, Robert P
Title: A Generalized Additive Model Correlating Blacklegged Ticks With White-Tailed Deer Density, Temperature, and Humidity in Maine, USA, 1990-2013.
  • Cord-id: av45918p
  • Document date: 2020_9_9
  • ID: av45918p
    Snippet: Geographical range expansions of blacklegged tick [Ixodes scapularis Say (Acari: Ixodidae)] populations over time in the United States have been attributed to a mosaic of factors including 20th century reforestation followed by suburbanization, burgeoning populations of the white-tailed deer [Odocoileus virginianus Zimmerman (Artiodactyla: Cervidae)], and, at the northern edge of I. scapularis' range, climate change. Maine, a high Lyme disease incidence state, has been experiencing warmer and sh
    Document: Geographical range expansions of blacklegged tick [Ixodes scapularis Say (Acari: Ixodidae)] populations over time in the United States have been attributed to a mosaic of factors including 20th century reforestation followed by suburbanization, burgeoning populations of the white-tailed deer [Odocoileus virginianus Zimmerman (Artiodactyla: Cervidae)], and, at the northern edge of I. scapularis' range, climate change. Maine, a high Lyme disease incidence state, has been experiencing warmer and shorter winter seasons, and relatively more so in its northern tier. Maine served as a case study to investigate the interacting impacts of deer and seasonal climatology on the spatial and temporal distribution of I. scapularis. A passive tick surveillance dataset indexed abundance of I. scapularis nymphs for the state, 1990-2013. With Maine's wildlife management districts as the spatial unit, we used a generalized additive model to assess linear and nonlinear relationships between I. scapularis nymph abundance and predictors. Nymph submission rate increased with increasing deer densities up to ~5 deer/km2 (13 deer/mi2), but beyond this threshold did not vary with deer density. This corroborated the idea of a saturating relationship between I. scapularis and deer density. Nymphs also were associated with warmer minimum winter temperatures, earlier degree-day accumulation, and higher relative humidity. However, nymph abundance only increased with warmer winters and degree-day accumulation where deer density exceeded ~2 deer/km2 (~6/mi2). Anticipated increases in I. scapularis in the northern tier could be partially mitigated through deer herd management.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date