Selected article for: "long terminal repeat and ltr long terminal repeat"

Author: Kapitonov, Vladimir V.; Jurka, Jerzy
Title: The Esterase and PHD Domains in CR1-Like Non-LTR Retrotransposons
  • Cord-id: 5gcyilwe
  • Document date: 2003_1_1
  • ID: 5gcyilwe
    Snippet: Most active non-LTR (long terminal repeat) retrotransposons carry two open reading frames (ORFs) encoding ORF1p and ORF2p proteins. The ORF2p proteins are relatively well studied and are known to contain endonuclease/reverse transcriptase domains. At the same time, the biological function of ORF1p proteins remains poorly understood, except in that they nonspecifically bind single-stranded mRNA/DNA molecules. CR1-like elements form the most widely distributed clade/superfamily of non-LTR retrotra
    Document: Most active non-LTR (long terminal repeat) retrotransposons carry two open reading frames (ORFs) encoding ORF1p and ORF2p proteins. The ORF2p proteins are relatively well studied and are known to contain endonuclease/reverse transcriptase domains. At the same time, the biological function of ORF1p proteins remains poorly understood, except in that they nonspecifically bind single-stranded mRNA/DNA molecules. CR1-like elements form the most widely distributed clade/superfamily of non-LTR retrotransposons. We found that ORF1p proteins encoded by diverse CR1-like elements contain conserved esterase domain (ES) or plant homeodomain (PHD). This indicates that CR1-like ORF1p proteins are either lipolytic enzymes or are involved in protein-protein interactions related to chromatin remodeling. Sequence conservation of ES suggests that interaction with cellular membranes is an important phase in life circles of CR1-like elements. Presumably such interaction helps in penetrating host cells. As a consequence, the presence of multiple young CR1 families characterized by ∼10% intrafamily and 40% interfamily identities may be explained by a relatively frequent horizontal transfer of these CR1-like elements. Unexpectedly, ES links together non-LTR retrotransposons and single-stranded RNA viruses like influenza C and coronaviruses, which are known to depend on their own ES.

    Search related documents:
    Co phrase search for related documents
    • long terminal repeat and ltr retroelement: 1, 2
    • long terminal repeat and ltr retrotransposon: 1, 2