Selected article for: "available data and infected people"

Author: Sottile, P. D.; Albers, D. J.; DeWitt, P. E.; Russell, S.; Stroh, J. N.; Kao, D. P.; Adrian, B.; Levine, M. E.; Mooney, R.; Larchick, L.; Kutner, J. S.; Wynia, M. K.; Glasheen, J. J.; Bennett, T. D.
Title: Real-Time Electronic Health Record Mortality Prediction During the COVID-19 Pandemic: A Prospective Cohort Study
  • Cord-id: 4s603ccg
  • Document date: 2021_1_15
  • ID: 4s603ccg
    Snippet: Background: The SARS-CoV-2 virus has infected millions of people, overwhelming critical care resources in some regions. Many plans for rationing critical care resources during crises are based on the Sequential Organ Failure Assessment (SOFA) score. The COVID-19 pandemic created an emergent need to develop and validate a novel electronic health record (EHR)-computable tool to predict mortality. Research Questions: To rapidly develop, validate, and implement a novel real-time mortality score for
    Document: Background: The SARS-CoV-2 virus has infected millions of people, overwhelming critical care resources in some regions. Many plans for rationing critical care resources during crises are based on the Sequential Organ Failure Assessment (SOFA) score. The COVID-19 pandemic created an emergent need to develop and validate a novel electronic health record (EHR)-computable tool to predict mortality. Research Questions: To rapidly develop, validate, and implement a novel real-time mortality score for the COVID-19 pandemic that improves upon SOFA. Study Design and Methods: We conducted a prospective cohort study of a regional health system with 12 hospitals in Colorado between March 2020 and July 2020. All patients >14 years old hospitalized during the study period without a do not resuscitate order were included. Patients were stratified by the diagnosis of COVID-19. From this cohort, we developed and validated a model using stacked generalization to predict mortality using data widely available in the EHR by combining five previously validated scores and additional novel variables reported to be associated with COVID-19-specific mortality. We compared the area under the receiver operator curve (AUROC) for the new model to the SOFA score and the Charlson Comorbidity Index. Results: We prospectively analyzed 27,296 encounters, of which 1,358 (5.0%) were positive for SARS-CoV-2, 4,494 (16.5%) included intensive care unit (ICU)-level care, 1,480 (5.4%) included invasive mechanical ventilation, and 717 (2.6%) ended in death. The Charlson Comorbidity Index and SOFA scores predicted overall mortality with an AUROC of 0.72 and 0.90, respectively. Our novel score predicted overall mortality with AUROC 0.94. In the subset of patients with COVID-19, we predicted mortality with AUROC 0.90, whereas SOFA had AUROC of 0.85. Interpretation: We developed and validated an accurate, in-hospital mortality prediction score in a live EHR for automatic and continuous calculation using a novel model, that improved upon SOFA.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date