Author: Cao, Yuan; Zhong, Xiao; Diao, Wei; Mu, Jingshi; Cheng, Yue; Jia, Zhiyun
Title: Radiomics in Differentiated Thyroid Cancer and Nodules: Explorations, Application, and Limitations Cord-id: 5lj6poia Document date: 2021_5_18
ID: 5lj6poia
Snippet: SIMPLE SUMMARY: Differentiated thyroid cancer (DTC) is the most common endocrine malignancy with a high incidence rate in females. The COVID-19 epidemic posed an increased risk of treatment delay causing increased DTC morbidity and mortality rate of DTC. Several imaging techniques, including ultrasound (US), magnetic resonance imaging (MRI), and computer tomography (CT), have been applied in the early screening and diagnosis of DTC. However, these traditional methods have limited sensitivity and
Document: SIMPLE SUMMARY: Differentiated thyroid cancer (DTC) is the most common endocrine malignancy with a high incidence rate in females. The COVID-19 epidemic posed an increased risk of treatment delay causing increased DTC morbidity and mortality rate of DTC. Several imaging techniques, including ultrasound (US), magnetic resonance imaging (MRI), and computer tomography (CT), have been applied in the early screening and diagnosis of DTC. However, these traditional methods have limited sensitivity and specificity due to dependence on the experience and skill of the radiologists. ABSTRACT: Radiomics is an emerging technique that allows the quantitative extraction of high-throughput features from single or multiple medical images, which cannot be observed directly with the naked eye, and then applies to machine learning approaches to construct classification or prediction models. This method makes it possible to evaluate tumor status and to differentiate malignant from benign tumors or nodules in a more objective manner. To date, the classification and prediction value of radiomics in DTC patients have been inconsistent. Herein, we summarize the available literature on the classification and prediction performance of radiomics-based DTC in various imaging techniques. More specifically, we reviewed the recent literature to discuss the capacity of radiomics to predict lymph node (LN) metastasis, distant metastasis, tumor extrathyroidal extension, disease-free survival, and B-Raf proto-oncogene serine/threonine kinase (BRAF) mutation and differentiate malignant from benign nodules. This review discusses the application and limitations of the radiomics process, and explores its ability to improve clinical decision-making with the hope of emphasizing its utility for DTC patients.
Search related documents:
Co phrase search for related documents- logistic regression and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
- logistic regression and lymph node: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
- logistic regression and lymph node dissection: 1
- logistic regression and lymph node involvement: 1, 2
- logistic regression and lymph node metastasis: 1, 2
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- logistic regression and machine learning approach: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- logistic regression and machine learning approach radiomic analysis: 1
- logistic regression and machine learning method: 1, 2, 3, 4, 5, 6, 7
- logistic regression and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
- logistic regression and magnetic resonance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
- logistic regression and magnetic resonance imaging: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
- lymph node dissection and magnetic resonance: 1
- lymph node involvement and magnetic resonance: 1, 2
- lymph node involvement and magnetic resonance imaging: 1, 2
- lymph node metastasis and machine learning: 1
- lymph node metastasis and magnetic resonance: 1
- lymph node metastasis and magnetic resonance imaging: 1
Co phrase search for related documents, hyperlinks ordered by date