Author: Thaitrong, Numrin; Liu, Peng; Briese, Thomas; Lipkin, W Ian; Chiesl, Thomas N; Higa, Yukiko; Mathies, Richard A
Title: Integrated capillary electrophoresis microsystem for multiplex analysis of human respiratory viruses. Cord-id: 0ebx61gb Document date: 2010_1_1
ID: 0ebx61gb
Snippet: We developed a two-layer, four-channel polymerase chain reaction (PCR)-capillary electrophoresis microdevice that integrates nucleic acid amplification, sample cleanup and concentration, capillary electrophoretic separation, and detection for multiplex analysis of four human respiratory viral pathogens, influenza A, influenza B, coronavirus OC43, and human metapneumovirus. Biotinylated and fluorescently labeled double-stranded (ds) deoxyribonucleic acid (DNA) amplification products are generated
Document: We developed a two-layer, four-channel polymerase chain reaction (PCR)-capillary electrophoresis microdevice that integrates nucleic acid amplification, sample cleanup and concentration, capillary electrophoretic separation, and detection for multiplex analysis of four human respiratory viral pathogens, influenza A, influenza B, coronavirus OC43, and human metapneumovirus. Biotinylated and fluorescently labeled double-stranded (ds) deoxyribonucleic acid (DNA) amplification products are generated in a 100 nL PCR reactor incorporating an integrated heater and a temperature sensor. After amplification, the products are captured and concentrated in a cross-linked acrylamide gel capture matrix copolymerized with acrydite-functionalized streptavidin-capture agents. Thermal dehybridization releases the fluorescently labeled DNA strand for capillary electrophoresis injection, separation, and detection. Using plasmid standards containing the viral genes of interest, each target can be detected starting from as few as 10 copies/reactor. When a two-step reverse transcription PCR amplification is employed, the device can detect ribonucleic acid (RNA) analogues of all four viral targets with detection limits in the range of 25-100 copies/reactor. The utility of the microdevice for analyzing samples from nasopharyngeal swabs is demonstrated. When size-based separation is combined with four-color detection, this platform provides excellent product discrimination, making it readily extendable to higher-order multiplex assays. This portable microsystem is also suitable for performing automated assays in point-of-care diagnostic applications.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date