Selected article for: "absence presence and acute respiratory sars syndrome"

Author: Narayanan, Krishna; Huang, Cheng; Lokugamage, Kumari; Kamitani, Wataru; Ikegami, Tetsuro; Tseng, Chien-Te K; Makino, Shinji
Title: Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells.
  • Cord-id: 06z7p7rc
  • Document date: 2008_1_1
  • ID: 06z7p7rc
    Snippet: The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding
    Document: The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date