Selected article for: "current outbreak and public health"

Author: Gao, Jiapan; Ding, Yuanyuan; Wang, Yuejin; Liang, Peida; Zhang, Liyang; Liu, Rui
Title: Oroxylin A is a severe acute respiratory syndrome coronavirus 2‐spiked pseudotyped virus blocker obtained from Radix Scutellariae using angiotensin‐converting enzyme II/cell membrane chromatography
  • Cord-id: 16ss45th
  • Document date: 2021_2_15
  • ID: 16ss45th
    Snippet: The current worldwide outbreak of the coronavirus disease 2019 (COVID‐19) has been declared a public health emergency. The angiotensin‐converting enzyme II (ACE2) has been reported as the primary host‐cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the causative virus of COVID‐19. In this study, we screened ACE2 ligands from Radix Scutellariae and investigated its suppressive effect on SARS‐CoV‐2 spiked pseudotyped virus in vitro. HEK293T cells sta
    Document: The current worldwide outbreak of the coronavirus disease 2019 (COVID‐19) has been declared a public health emergency. The angiotensin‐converting enzyme II (ACE2) has been reported as the primary host‐cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the causative virus of COVID‐19. In this study, we screened ACE2 ligands from Radix Scutellariae and investigated its suppressive effect on SARS‐CoV‐2 spiked pseudotyped virus in vitro. HEK293T cells stably expressing ACE2 receptors (ACE2 cells) were used to provide the receptor for the ACE2/cell membrane chromatography (CMC) method used for analysis. The SARS‐CoV‐2‐spiked pseudotyped virus was used to examine the anti‐viropexis effect of the screened compounds in ACE2 cells. Molecular docking and the surface plasmon resonance (SPR) assay were used to determine the binding properties. Oroxylin A exhibited an appreciable suppressive effect against the entrance of the SARS‐CoV‐2‐spiked pseudotyped virus into ACE2 cells, which showed good binding to ACE2 as determined using SPR and CMC. Oroxylin A was shown to be a potential candidate in the treatment for COVID‐19 by virtue of its blocking the entrance of SARS‐CoV‐2 into ACE2 cells by specifically binding to the ACE2 receptor.

    Search related documents:
    Co phrase search for related documents
    • acid protein and active compound: 1, 2
    • acid protein and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acid protein and lopinavir ritonavir: 1, 2, 3
    • acid protein and low concentration: 1, 2, 3, 4, 5
    • acid protein and low concentration range: 1
    • action mechanism and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • action mechanism and long retention time: 1
    • action mechanism and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • action mechanism and low concentration: 1, 2, 3, 4
    • action mechanism and low concentration range: 1
    • active compound and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
    • active compound and low concentration: 1
    • acute respiratory syndrome and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and low concentration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and low concentration range: 1, 2
    • acute respiratory syndrome and luciferase assay system: 1