Author: Heller, Laura; Roepe, Paul D; de Dios, Angel C
Title: Artesunate Activation by Heme in an Aqueous Medium. Cord-id: 1atum802 Document date: 2019_10_1
ID: 1atum802
Snippet: The reaction between the antimalarial drug artesunate (ATS) and ferriprotoporphyrin_(IX) (FPIX) in the presence of glutathione (GSH) has been monitored by nuclear magnetic resonance (NMR) spectroscopy. By following the disappearance of resonances of protons near the endoperoxide group in ATS, the rate at which the drug is activated can be directly measured. In an aqueous medium, the rate of ATS activation is limited by the rate of reduction of the FPIX Fe(III) center by GSH. The reaction is obse
Document: The reaction between the antimalarial drug artesunate (ATS) and ferriprotoporphyrin_(IX) (FPIX) in the presence of glutathione (GSH) has been monitored by nuclear magnetic resonance (NMR) spectroscopy. By following the disappearance of resonances of protons near the endoperoxide group in ATS, the rate at which the drug is activated can be directly measured. In an aqueous medium, the rate of ATS activation is limited by the rate of reduction of the FPIX Fe(III) center by GSH. The reaction is observed to slow dramatically in the presence of other heme binding antimalarial drugs. These findings explain the long observed antagonism between artemisinin derivatives and quinoline-based drugs. This discovery suggests that combination therapy that involves artemisinin or any of its derivatives and a quinoline-based drug may be compromised.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date