Selected article for: "chain reaction and health care"

Author: Quadros, C. A.; Leal, M. C. B.; Baptista-Sobrinho, C. A.; Nonaka, C. K.; Souza, B. S.; Milan-Mattos, J. C.; Catai, A. M.; Lorenzo, V. A.; Ferreira, A. G.
Title: ENVIRONMENTAL SAFETY EVALUATION OF THE PROTECTION AND ISOLATION SYSTEM FOR PATIENTS WITH COVID-19.
  • Cord-id: 0xcawd4n
  • Document date: 2020_6_7
  • ID: 0xcawd4n
    Snippet: Background SARS-CoV-2 has high transmissibility through respiratory droplets and aerosol, making COVID-19 a worldwide pandemic. In its severe form, patients progress to respiratory failure. Non-invasive mechanical ventilation restrictions and early orotracheal intubation have collapsed health systems due to insufficient intensive care unit beds and mechanical ventilators. COVID-19 dedicated healthcare professionals have high infection rates. This publication describes experimental testing of the
    Document: Background SARS-CoV-2 has high transmissibility through respiratory droplets and aerosol, making COVID-19 a worldwide pandemic. In its severe form, patients progress to respiratory failure. Non-invasive mechanical ventilation restrictions and early orotracheal intubation have collapsed health systems due to insufficient intensive care unit beds and mechanical ventilators. COVID-19 dedicated healthcare professionals have high infection rates. This publication describes experimental testing of the Protection and Isolation System for Patients with COVID-19 (PISP/COVID-19). Method PISP/COVID-19 is a disposable transparent polyethylene plastic that covers the patient's entire hospital bed, with its internal air aspirated by the hospital's vacuum system attached to a microparticle filter. Experiments validated PISP/COVID-19's ability to block aerosolized microparticles dissemination. Caffeine was used as a molecular marker, with leakage evaluation through sensors analysis using nuclear magnetic resonance spectroscopy. The biological marker was synthetic SARS-CoV-2 RNA, using Reverse Transcription Polymerase Chain Reaction (RT-PCR) as the detection method. Results PISP/COVID-19 was effective against molecular and biological markers environmental dispersion in simulations of non-invasive ventilation, high-flow nasal cannula oxygen and mechanical ventilation isolation. Caffeine was not detected in any of the sensors positioned at points outside the PISP/COVID-19. The ability of PISP/COVID-19 to retain virus particles and protect the surrounding environment was confirmed by detection and gradients quantification of synthetic SARS-CoV-2 RNA by RT-PCR. Conclusion PISP/COVID-19 was effective in the retention of the molecular and biological markers in all tested simulations. Considering the current pandemic, PISP/COVID-19 might increase the use of non-invasive ventilation, high-flow nasal cannula oxygen and provide additional protection to healthcare professionals.

    Search related documents:
    Co phrase search for related documents
    • acquisition time and magnetic resonance: 1, 2, 3, 4, 5, 6, 7
    • acute failure and low mortality rate: 1
    • acute failure and magnetic resonance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
    • additional method and magnetic resonance: 1, 2