Author: Huynh, Tien; Wang, Haoran; Luan, Binquan
Title: In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2’s Main Protease Cord-id: 06113cn0 Document date: 2020_5_14
ID: 06113cn0
Snippet: [Image: see text] Currently, the new coronavirus disease 2019 (COVID-19) is a global pandemic without any well-calibrated treatment. To inactivate the SARS-CoV-2 virus that causes COVID-19, the main protease (Mpro) that performs key biological functions in the virus has been the focus of extensive studies. With the fast-response experimental efforts, the crystal structures of Mpro of the SARS-CoV-2 virus have just become available recently. Herein, we theoretically investigated the mechanism of
Document: [Image: see text] Currently, the new coronavirus disease 2019 (COVID-19) is a global pandemic without any well-calibrated treatment. To inactivate the SARS-CoV-2 virus that causes COVID-19, the main protease (Mpro) that performs key biological functions in the virus has been the focus of extensive studies. With the fast-response experimental efforts, the crystal structures of Mpro of the SARS-CoV-2 virus have just become available recently. Herein, we theoretically investigated the mechanism of binding between the Mpro’s pocket and various marketed drug molecules being tested in clinics to fight COVID-19 that show promising outcomes. By combining the existing experimental results with our computational ones, we revealed an important ligand binding mechanism of the Mpro, demonstrating that the binding stability of a ligand inside the Mpro pocket can be significantly improved if part of the ligand occupies its so-called “anchor†site. Along with the highly potent drugs and/or molecules (such as nelfinavir) revealed in this study, the newly discovered binding mechanism paves the way for further optimizations and designs of Mpro’s inhibitors with a high binding affinity.
Search related documents:
Co phrase search for related documents- academic commercial and acute sars cov respiratory syndrome coronavirus: 1, 2, 3
- accurate model and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4
- accurate model and lung tissue: 1
- achilles sars heel and acute sars cov respiratory syndrome coronavirus: 1, 2
- action mechanism and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- action mechanism and low bioavailability: 1, 2
- action mechanism and low solubility: 1
- action mechanism and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute sars cov respiratory syndrome coronavirus and additional effort: 1, 2
- acute sars cov respiratory syndrome coronavirus and additional field: 1
- acute sars cov respiratory syndrome coronavirus and low bioavailability: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute sars cov respiratory syndrome coronavirus and low solubility: 1
- acute sars cov respiratory syndrome coronavirus and lung accumulate: 1, 2
- acute sars cov respiratory syndrome coronavirus and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- low bioavailability and lung tissue: 1
Co phrase search for related documents, hyperlinks ordered by date