Author: Zhang, Zheng; Jiang, Weiwei; Hu, Miao; Gao, Rui; Zhou, Xuhui
Title: MiR-486-3p promotes osteogenic differentiation of BMSC by targeting CTNNBIP1 and activating the Wnt/β-catenin pathway. Cord-id: 0c1e36fb Document date: 2021_6_8
ID: 0c1e36fb
Snippet: BACKGROUND Dysfunction in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) leads to bone loss/osteoporosis. The catenin beta interacting protein 1 (CTNNBIP1) is an inhibitor of Wnt/β-catenin signaling, whose role in osteogenesis remains elusive. This study aimed to reveal the effects of miR-486-3p/CTNNBIP1 in osteogenesis. METHODS Bone marrow samples from healthy individuals and osteoporosis patients and mice with sham or ovariectomy (OVX) surgeries were collected. L
Document: BACKGROUND Dysfunction in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) leads to bone loss/osteoporosis. The catenin beta interacting protein 1 (CTNNBIP1) is an inhibitor of Wnt/β-catenin signaling, whose role in osteogenesis remains elusive. This study aimed to reveal the effects of miR-486-3p/CTNNBIP1 in osteogenesis. METHODS Bone marrow samples from healthy individuals and osteoporosis patients and mice with sham or ovariectomy (OVX) surgeries were collected. Levels of CTNNBIP1 and miR-486-3p were assessed. A dual-luciferase reporter assay was used to confirm the interactions between CTNNBIP1 and miR-486-3p. MiR-486-3p mimics/inhibitor or CTNNBIP1 overexpression lentiviruses were transfected to human BMSCs (hBMSCs) and an osteogenic assay was performed. Alizarin red S (ARS) and Alkaline phosphatase (ALP) intensity and expression of osteogenic genes Runx2, Alp, Cola1 and Bglap were measured. Key proteins in the Wnt/β-catenin pathway including active β-catenin, Bcl-2, and Cyclin D1 were assessed. RESULTS CTNNBIP1 was upregulated while miR-486-3p was downregulated in osteoporosis patients and OVX mice. CTNNBIP1 was confirmed as a target of miR-486-3p. MiR-486-3p overexpression promoted, while miR-486-3p knockdown suppressed, osteogenic differentiation and Wnt/β-catenin signaling. Rescue experiments confirmed the negative effects of CTNNBIP1 overexpression on osteoblastic differentiation and that miR-486-3p mimics could reverse canonical Wnt signaling. CONCLUSION This study demonstrated that miR-486-3p targets CTNNBIP1, thus activating the Wnt/β-catenin signaling pathway to promote osteogenesis of BMSCs.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date