Author: Broadbent, Lindsay; Bamford, Connor G.G.; Campos, Guillermo Lopez; Manzoor, Sheerien; Courtney, David; Ali, Ahlam; Touzelet, Olivier; McCaughey, Conall; Mills, Ken; Power, Ultan F.
Title: An Endogenously activated antiviral state restricts SARS-CoV-2 infection in differentiated primary airway epithelial cells Cord-id: 0925f604 Document date: 2021_8_18
ID: 0925f604
Snippet: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and went on to cause over 3.3 million deaths in 15 months. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated in
Document: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and went on to cause over 3.3 million deaths in 15 months. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated interferon lambda (IFNλ) pathway leads to resistance against SARS-CoV-2 infection. Using a well-differentiated primary nasal epithelial cell (WD-PNEC) model from multiple adult donors, we discovered that susceptibility to SARS-CoV-2 infection, but not respiratory syncytial virus (RSV) infection, varied. One of four donors was resistant to SARS-CoV-2 infection. High baseline IFNλ expression levels and associated interferon stimulated genes correlated with resistance to SARS-CoV-2 infection. Inhibition of the JAK/STAT pathway in WD-PNECs with high endogenous IFNλ secretion resulted in higher SARS-CoV-2 titres. Conversely, prophylactic IFNλ treatment of WD-PNECs susceptible to infection resulted in reduced viral titres. An endogenously activated IFNλ response, possibly due to genetic differences, may be one explanation for the differences in susceptibility to SARS-CoV-2 infection in humans. Importantly, our work supports the continued exploration of IFNλ as a potential pharmaceutical against SARS-CoV-2 infection.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome coronavirus and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Co phrase search for related documents, hyperlinks ordered by date