Author: Dodero-Rojas, Esteban; Onuchic, José N.; Whitford, Paul C.
                    Title: Sterically-Confined Rearrangements of SARS-CoV-2 Spike Protein Control Cell Invasion  Cord-id: 0ls9f5yx  Document date: 2021_1_19
                    ID: 0ls9f5yx
                    
                    Snippet: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptid
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptides must be released from the core of the protein and associate with the host membrane. Interestingly, the Spike protein possesses many post-translational modifications, in the form of branched glycans that flank the surface of the assembly. Despite the large number of glycosylation sites, until now, the specific role of glycans during cell invasion has been unclear. Here, we propose that glycosylation is needed to provide sufficient time for the fusion peptides to reach the host membrane, otherwise the viral particle would fail to enter the host. To understand this process, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and postfusion conformations. These simulations indicate that the steric composition of the glycans induces a pause during the Spike protein conformational change. We additionally show that this glycan-induced delay provides a critical opportunity for the fusion peptides to capture the host cell. This previously-unrecognized role of glycans reveals how the glycosylation state can regulate infectivity of this pervasive pathogen.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
 
                                Co phrase  search for related documents, hyperlinks ordered by date