Author: AlJame, Maryam; Imtiaz, Ayyub; Ahmad, Imtiaz; Mohammed, Ameer
Title: Deep forest model for diagnosing COVID-19 from routine blood tests Cord-id: 1e1u8asd Document date: 2021_8_17
ID: 1e1u8asd
Snippet: The Coronavirus Disease 2019 (COVID-19) global pandemic has threatened the lives of people worldwide and posed considerable challenges. Early and accurate screening of infected people is vital for combating the disease. To help with the limited quantity of swab tests, we propose a machine learning prediction model to accurately diagnose COVID-19 from clinical and/or routine laboratory data. The model exploits a new ensemble-based method called the deep forest (DF), where multiple classifiers in
Document: The Coronavirus Disease 2019 (COVID-19) global pandemic has threatened the lives of people worldwide and posed considerable challenges. Early and accurate screening of infected people is vital for combating the disease. To help with the limited quantity of swab tests, we propose a machine learning prediction model to accurately diagnose COVID-19 from clinical and/or routine laboratory data. The model exploits a new ensemble-based method called the deep forest (DF), where multiple classifiers in multiple layers are used to encourage diversity and improve performance. The cascade level employs the layer-by-layer processing and is constructed from three different classifiers: extra trees, XGBoost, and LightGBM. The prediction model was trained and evaluated on two publicly available datasets. Experimental results show that the proposed DF model has an accuracy of 99.5%, sensitivity of 95.28%, and specificity of 99.96%. These performance metrics are comparable to other well-established machine learning techniques, and hence DF model can serve as a fast screening tool for COVID-19 patients at places where testing is scarce.
Search related documents:
Co phrase search for related documents- long short term memory and low precision: 1
- long short term memory and lr logistic regression: 1, 2, 3, 4, 5, 6
- long short term memory and lstm long short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- long short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short term memory and machine learning method: 1, 2, 3, 4, 5
- long short term memory and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9
- low accuracy and lstm long short term memory: 1, 2
- low accuracy and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- low accuracy and machine learning model: 1, 2, 3
- low precision and lstm long short term memory: 1
- low precision and machine learning: 1, 2, 3
- low risk patient and lymphocyte count: 1
- low risk patient and machine learning: 1
- low sensitivity and lymphocyte count: 1, 2, 3, 4, 5, 6, 7
- low sensitivity and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
- low sensitivity and machine learning model: 1, 2, 3, 4
- lymphocyte count and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- lymphocyte count and machine learning method: 1
- lymphocyte count and machine learning model: 1
Co phrase search for related documents, hyperlinks ordered by date