Author: Zhang, Fanfan; Ye, Yu; Song, Deping; Guo, Nannan; Peng, Qi; Li, Anqi; Zhou, Xingrong; Chen, Yanjun; Zhang, Min; Huang, Dongyan; Tang, Yuxin
Title: A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification Cord-id: 1k9l0z5k Document date: 2017_9_21
ID: 1k9l0z5k
Snippet: BACKGROUND: Porcine Deltacoronavirus (PDCoV) is a newly emerged enteropathogenic coronavirus that causes diarrhea and mortality in neonatal piglets. PDCoV has spread to many countries around the world, leading to significant economic losses in the pork industry. Therefore, a rapid and sensitive method for detection of PDCoV in clinical samples is urgently needed. RESULTS: In this study, we developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) ass
Document: BACKGROUND: Porcine Deltacoronavirus (PDCoV) is a newly emerged enteropathogenic coronavirus that causes diarrhea and mortality in neonatal piglets. PDCoV has spread to many countries around the world, leading to significant economic losses in the pork industry. Therefore, a rapid and sensitive method for detection of PDCoV in clinical samples is urgently needed. RESULTS: In this study, we developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay specific for nucleocapsid gene to diagnose and monitor PDCoV infections. The detection limit of RT-LAMP assay was 1 × 10(1) copies of PDCoV, which was approximately 100-fold more sensitive than gel-based one-step reverse transcription polymerase chain reaction (RT-PCR). This assay could specifically amplify PDCoV and had no cross amplification with porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKoV), porcine astrovirus (PAstV), porcine reproductive and respiratory syndrome virus (PRRSV), classic swine fever virus (CSFV), and porcine circovirus type 2 (PCV2). By screening a panel of clinical specimens (N = 192), this method presented a similar sensitivity with nested RT-PCR and was 1–2 log more sensitive than conventional RT-PCR in detection of PDCoV. CONCLUSIONS: The RT-LAMP assay established in this study is a potentially valuable tool, especially in low-resource laboratories and filed settings, for a rapid diagnosis, surveillance, and molecular epidemiology investigation of PDCoV infections. To the best of our knowledge, this is the first work for detection of newly emerged PDCoV with LAMP technology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40659-017-0135-6) contains supplementary material, which is available to authorized users.
Search related documents:
Co phrase search for related documents- accurate rapid identification and low sensitivity: 1, 2, 3
- acute highly contagious and low sensitivity: 1
Co phrase search for related documents, hyperlinks ordered by date