Author: Wu, Jiachao; Shen, Jiang; Xu, Man; Shao, Minglai
Title: A novel combined dynamic ensemble selection model for imbalanced data to detect COVID-19 from complete blood count Cord-id: 0lz4nohh Document date: 2021_9_29
ID: 0lz4nohh
Snippet: BACKGROUND: As blood testing is radiation-free, low-cost and simple to operate, some researchers use machine learning to detect COVID-19 from blood test data. However, few studies take into consideration the imbalanced data distribution, which can impair the performance of a classifier. METHOD: A novel combined dynamic ensemble selection (DES) method is proposed for imbalanced data to detect COVID-19 from complete blood count. This method combines data preprocessing and improved DES. Firstly, we
Document: BACKGROUND: As blood testing is radiation-free, low-cost and simple to operate, some researchers use machine learning to detect COVID-19 from blood test data. However, few studies take into consideration the imbalanced data distribution, which can impair the performance of a classifier. METHOD: A novel combined dynamic ensemble selection (DES) method is proposed for imbalanced data to detect COVID-19 from complete blood count. This method combines data preprocessing and improved DES. Firstly, we use the hybrid synthetic minority over-sampling technique and edited nearest neighbor (SMOTE-ENN) to balance data and remove noise. Secondly, in order to improve the performance of DES, a novel hybrid multiple clustering and bagging classifier generation (HMCBCG) method is proposed to reinforce the diversity and local regional competence of candidate classifiers. RESULTS: The experimental results based on three popular DES methods show that the performance of HMCBCG is better than only use bagging. HMCBCG+KNE obtains the best performance for COVID-19 screening with 99.81% accuracy, 99.86% F1, 99.78% G-mean and 99.81% AUC. CONCLUSION: Compared to other advanced methods, our combined DES model can improve accuracy, G-mean, F1 and AUC of COVID-19 screening.
Search related documents:
Co phrase search for related documents- accuracy value and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- accurate rapid and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- accurate rapid detection method and acute respiratory syndrome: 1, 2, 3
- acute respiratory syndrome and local capability: 1
- acute respiratory syndrome and local region: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date