Selected article for: "local regional and machine learning"

Author: Wu, Jiachao; Shen, Jiang; Xu, Man; Shao, Minglai
Title: A novel combined dynamic ensemble selection model for imbalanced data to detect COVID-19 from complete blood count
  • Cord-id: 0lz4nohh
  • Document date: 2021_9_29
  • ID: 0lz4nohh
    Snippet: BACKGROUND: As blood testing is radiation-free, low-cost and simple to operate, some researchers use machine learning to detect COVID-19 from blood test data. However, few studies take into consideration the imbalanced data distribution, which can impair the performance of a classifier. METHOD: A novel combined dynamic ensemble selection (DES) method is proposed for imbalanced data to detect COVID-19 from complete blood count. This method combines data preprocessing and improved DES. Firstly, we
    Document: BACKGROUND: As blood testing is radiation-free, low-cost and simple to operate, some researchers use machine learning to detect COVID-19 from blood test data. However, few studies take into consideration the imbalanced data distribution, which can impair the performance of a classifier. METHOD: A novel combined dynamic ensemble selection (DES) method is proposed for imbalanced data to detect COVID-19 from complete blood count. This method combines data preprocessing and improved DES. Firstly, we use the hybrid synthetic minority over-sampling technique and edited nearest neighbor (SMOTE-ENN) to balance data and remove noise. Secondly, in order to improve the performance of DES, a novel hybrid multiple clustering and bagging classifier generation (HMCBCG) method is proposed to reinforce the diversity and local regional competence of candidate classifiers. RESULTS: The experimental results based on three popular DES methods show that the performance of HMCBCG is better than only use bagging. HMCBCG+KNE obtains the best performance for COVID-19 screening with 99.81% accuracy, 99.86% F1, 99.78% G-mean and 99.81% AUC. CONCLUSION: Compared to other advanced methods, our combined DES model can improve accuracy, G-mean, F1 and AUC of COVID-19 screening.

    Search related documents:
    Co phrase search for related documents
    • accuracy value and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • accurate rapid and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accurate rapid detection method and acute respiratory syndrome: 1, 2, 3
    • acute respiratory syndrome and local capability: 1
    • acute respiratory syndrome and local region: 1, 2, 3, 4