Author: Caetano Silva-Filho, José; Germoglio Farias de Melo, Cynthia; Lima de Oliveira, JanaÃna
                    Title: The influence of ABO blood groups on COVID-19 susceptibility and severity: a molecular hypothesis based on carbohydrate-carbohydrate interactions  Cord-id: 2979u47a  Document date: 2020_8_2
                    ID: 2979u47a
                    
                    Snippet: The world is experiencing one of the most difficult moments in history with the COVID-19 pandemic, a disease caused by SARS-CoV-2, a new type of coronavirus. Virus infectivity is mediated by the binding of Spike transmembrane glycoprotein to specific protein receptors present on cell host surface. Spike is a homotrimer that emerges from the virion, each monomer containing two subunits named S1 and S2, which are related to cell recognition and membrane fusion, respectively. S1 is subdivided in do
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: The world is experiencing one of the most difficult moments in history with the COVID-19 pandemic, a disease caused by SARS-CoV-2, a new type of coronavirus. Virus infectivity is mediated by the binding of Spike transmembrane glycoprotein to specific protein receptors present on cell host surface. Spike is a homotrimer that emerges from the virion, each monomer containing two subunits named S1 and S2, which are related to cell recognition and membrane fusion, respectively. S1 is subdivided in domains S1A (or NTD) and S1B (or RBD), with experimental and in silico studies suggesting that the former binds to sialic acid-containing glycoproteins, such as CD147, whereas the latter binds to ACE2 receptor. Recent findings indicate that the ABO blood system modulates susceptibility and progression of infection, with type-A individuals being more susceptible to infection and/or manifestation of a severe condition. Seeking to understand the molecular mechanisms underlying this susceptibility, we carried out an extensive bibliographic survey on the subject. Based on this survey, we hypothesize that the correlation between the ABO blood system and susceptibility to SARS-CoV-2 infection can be presumably explained by the modulation of sialic acid-containing receptors distribution on host cell surface induced by ABO antigens through carbohydrate-carbohydrate interactions, which could maximize or minimize the virus Spike protein binding to the host cell. This model could explain previous sparse observations on the molecular mechanism of infection and can direct future research to better understand of COVID-19 pathophysiology.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
 
                                Co phrase  search for related documents, hyperlinks ordered by date